Validation of MALDI-TOF Mass Spectrometry for the Blood Stream Infection Focus on Outcomes Trial.

J. Richards, M. Wootton, R. A. Howe, A. P. MacGowan

Introduction

Around 90-100,000 Blood Stream Infections (BSI) occur per annum in the UK at a cost of £6,200 per episode, with mortality up to 40%. Lack of BSI research leads to deficiency of information on outcomes/ risk factors for poor outcome. Patient factors related to underlying disease, site and severity of infection impact adversely on outcome whilst timely appropriate antimicrobial chemotherapy and removal of infected prosthetic materials are beneficial. Rapid laboratory based Diagnosis (RD) has beneficial effects on antibiotic use in infected patients and may reduce mortality. This multicentre trial aims to develop a programme of linked research studies aimed at improving management of BSI, reducing patient mortality. The RD technology chosen was Matrix Assisted Laser Desorption/Ionisation-Time of Flight Mass Spectrometry (MALDI-TOF MS). Validation of the MALDI-TOF Mass Spectrometry (MS) was required for bacterial identification from culture plates and direct from positive blood cultures

Table 1. MS results direct from cultures (no. with correct IDs/total).

Table 3: Single organism blood culture inaccuracies.

Table 4: No reliable IDs with BCP

Results

Of 854 isolates from culture plates, MS accurately identified 99.9% to genus level, with 99.5% accurately identified on the first occasion. 9 out of 24 Alpha Haemolytic Streptococci (AHS) mis-identified as S. pneumoniae. Variations in Acinetobacter species were noted but were not considered significant (Table 1).

Of the 316 SO blood cultures 93.4% were accurately identified using the SP, with the majority of failures exhibiting “no reliable ID” (Table 4). The BCP and BComMixP gave accurate IDs in 92.1% and 97.8% respectively (Table 2). The majority of inaccuracies using the BCP were due to false mixes (Tables 3 & 5). 35.3% of PM cultures were accurately identified using BCP. In all other PM cultures one of the species was accurately identified (Table 6).

Conclusions

MS performed well for identification of bacterial BSI isolates from culture plates. AHS and anaerobes were problematic. For direct identity from blood cultures the MS performed better using the blood culture programme minus the mixed culture feature.

Specialist Antimicrobial Chemotherapy Unit, Public Health Wales, Cardiff, UK.

Email: mandy.wootton@wales.nhs.uk