HOW HORIZONTAL TRANSFER OF MOBILE ELEMENTS DRIVE BACTERIAL EVOLUTION

UNIT MICROBIAL EVOLUTIONARY GENOMICS
EDUARDO PC ROCHA
EROCHA@PASTEUR.FR
1. Genome variability is driven by mobile elements
 E. coli, STs, pan-genomes

2. Mechanisms of transfer matter
 Plasmids, conjugation, integrative elements

3. Outlook: crossing borders & consequences
 Recombination, interconversion, functional consequences
E. coli’s large pan-genome

Escherichia coli
1305 natural isolates

Pan-genome: 76 221 gene families

Average genome: 4 685

No E. coli strain is a great model system for E. coli

(Touchon, Denamur, Gordon et al in prep)
Phages & plasmids increase genome size & especially variance in genome size.

(Touchon, Denamur, Gordon et al in prep)
Table of contents

1. Genome variability is driven by mobile elements
 E. coli, STs, pan-genomes

2. Mechanisms of transfer matter
 Plasmids, conjugation, integrative elements

3. Outlook: crossing borders & consequences
 Recombination, interconversion, functional consequences
Different MGEs for distinct traits?

Conjugation

- Conjugative elements: Antibiotic resistance
 Staphylococcus, *Streptococcus*, enterobacteria.

- Prophages/plasmids: Toxins and other virulence factors
 Cholera, botulism, diphtheria, anthrax, shigellosis.

- Conjugative elements: Mutualism
 Rhizobia.

Virion-associated
Transmission: a variety of mechanisms

Horizontal Transmission
- Replication, Integration, excision
- Injection, Virion, packaging, lysis

Vertical Transmission
- Replication, partition
- Injection, Virion, packaging, lysis

Conjugation/mobilization
- Integration, excision
- Conjugation/mobilization

Why so many mechanisms?
- What are their relative advantages?
- Do they carry similar accessory traits?
To integrate or to self-replicate?

Conjugative plasmid (CP)
- 12% of Bacteria
- Partition
- Replication

Integrative Conjugative Element (ICE)
- 18% of Bacteria
- Integrase

(Guglielmini, PLoS Gen, 11; Cury, NAR, 17; Cury, MBE, 18)
Plasmids are more plastic

151 ICEs of Proteobacteria

139 CPs of the same genus

(Cury, NAR, 17; Cury, MBE, 18)
Genetic relatdeness vs Host phylogenetic distance

- **Distant taxa**
- **Close taxa**

Different elements

Similar elements

\[\text{wGRR} = \frac{\%id \cdot \# \text{orthologues}}{\text{Smallest genome}} \]
Genetic relatedness (wGRR) vs Host phylogenetic distance

Very different taxa

Very similar elements
ICEs have broader host ranges

Very different taxa

Very similar elements

(Cury, NAR, 17; Cury, MBE, 18)
To integrate or to self-replicate?

Trade-off: genetic plasticity versus host range

(Cury, NAR, 17; Cury, MBE, 18)
1. Genome variability is driven by mobile elements
 E. coli, STs, pan-genomes

2. Mechanisms of transfer matter
 Plasmids, conjugation, integrative elements

3. Outlook: crossing borders & consequences
 Recombination, interconversion, functional consequences
Distant transfer: Plasmids become ICEs

K-mer comparison with cognate chromosome:

- ICE more similar to host
- Plasmid more similar to host

ICEs in ICE/CP pairs are less similar to the chromosome:
- Confiming long range transfer of ICE
- Suggesting that CPs transferring to different taxa become ICE (because they can’t replicate).

(Cury, NAR, 17; Cury, MBE, 18)
Different elements, distinct functions

Comparison of functions across ICE and conjugative plasmids:

- Partition
- Replication
- Integrase
- Antibiotic resistance
- Toxin Antitoxin
- Integrons
- Entry Exclusion
- Restriction Modification
- Metabolism
- Cellular processes
- DNA Processing
- Poorly characterized
- Not annotated

- More likely in ICE
- Less likely in ICE

Relative probability in ICE

© ESCMID eLibrary by author

(Cury, NAR, 17; Cury, MBE, 18)
Among 2200 plasmids:

- ~20% conjugative (CONJ)
- ~30% mobilizable (MOB)
- ~50% non-MOB

We don’t know how half of the plasmids transfer.
Resume and outlook

- MGEs drive variation in pangenomes.
- MGEs mobility mechanisms shape rates and range of transfer.
- Recombination and interconversion between MGEs may be frequent, allowing exchange of adaptive genes.
- Transfer mechanisms shape the traits carried by MGEs.
Address

Date and place of birth

11th May 1985, Oviedo (Spain)

Name

OLAYA RENDUELES GARÇIA

Date and place of birth

11th May 1985, Oviedo (Spain)

Address

Diggelmannstrasse 33

olaya.rendueles@env.ethz.ch

Languages

- Native speaker English
- Bilingual English-French courses
- Other languages: German, Spanish

Education

- 2004–2005: BS Degree in the University of Hannover, Germany (ERASMUS Fellowship).
- 2005–2007: MS, specialising in Clinical Microbiology, in the University of Oviedo (Spain).

Research Awards and Fellowships

- 2010: EMBO Workshop, Heidelberg, Germany.
- 2012: EMBO Long-Term Fellowship Award.
- 2012: ETH Postdoctoral Fellowship Award (declined).
- 2014: EMBO Laboratory Management Course.

RELEVANT COURSES

 - Cell Signaling, infection and innate immunity
- 2012: 3 months fellowship from CSIC (Spanish National Research Council).
- 2013: 4 months fellowship from CSIC (Spanish National Research Council).
- 2013: Jury Award for Best Oral Talk in Young Researchers for Life Sciences (YRLS), Paris.

Lab experience

- DNA purification and analysis of genetic determinism
- Bacterial culture, minipreparation of plasmid DNA, Southern blot, and PCR.
- Analysis of nucleic acids and proteins
- Linkage disequilibrium analysis and tagging SNP identification
- Techniques: Cell growth analysis, fluorometer based assays, RNA-seq results

Hobbies

- Reading
- Running, gym
- Science Fiction, fantastic, fantasy
- Doctor Who, Sherlock, Black mirror
- Suits, Game of Thrones
- Watching TV shows

Projects

- Project title: Effect of various protonophores on growth and membrane potential

Other tools used

- NCBI tools
- HaploView, Cary Eclipse
- Other tools used for self-teaching
- R language: Bash basis, File management, Unix
- Collage analysis of nucleic acids and proteins

Speciﬁcally relevant for this talk

Microbial evolutionary genomics

- Escherichia coli
- Metagenomics
- HaploView, Cary Eclipse
- Other tools used for self-teaching
- R language: Bash basis, File management, Unix

Collaborators

- David Gordon (ANU/Canberra)
- Erick Denamur (AP-HP, U Paris)
- Fernando de la Cruz (U Cantabria)

- M Touchon
 - CR CNRS
- J Cury
 - Now at Saclay (FR)

- Highly motivated biology student in the first year of a Master’s degree, passionate about genetics and seeking a passion.