P2225 Molecular identification and antifungal susceptibility of yeast from fungaemia: results from a population-based surveillance in Spain (2016-2018)

Celia Cardozo1, Oscar Zaragoza2, Paloma Merino3, Eva Calabuig4, Francesca Gioia5, Laura Escolà-Verge6, Mario Fernandez Ruiz7, Luis Eduardo Lopez-Cortes8, Regino Rodríguez9, Francesc Marco Reverte1, Manuela Aguilar-Guisado10, Guillermo Cuervo11, Patricia Muñoz12, Benito Almirante6, Pedro Puerta1, Jesus Fortun Abete5, Jesus Guinea Ortega12, Alba Ruiz4, Alex Soriano1, Carolina Garcia Vidal1

1 Hospital Clinic, Barcelona, Spain, 2 Instituto de Salud Carlos III, Majadahonda, Spain, 3 Hospital Universitario Clínico San Carlos, Madrid, Spain, 4 Hospital Universitari i Politecnic La Fe, Valencia, Spain, 5 Hospital Universitario Ramón y Cajal, Madrid, Spain, 6 Hospital Universitari Vall d’Hebron, Barcelona, Spain, 7 Hospital Universitario “12 de Octubre”, Madrid, Spain, 8 Hospital Universitario Virgen de Macarena, Sevilla, Spain, 9 Hospital Universitario Cruces, Bilbao, Spain, 10 Hospital Universitario Virgen del Rocío, Sevilla, Spain, 11 Hospital Universitari Bellvitge, Barcelona, Spain, 12 Hospital General Universitario Gregorio Marañón, Madrid, Spain

Background: We aimed to describe the molecular identification and antifungal susceptibilities of isolates causing fungemia in a prospective population-based surveillance study in Spain.

Materials/methods: Prospective national multicenter study of candidaemia in adult patients from September 2016 to February 2018 at 11 university hospitals in Spain. All the strains were then forwarded to the mycology reference laboratory at the Spanish National Center for Microbiology (Majadahonda, Madrid) for species confirmation and susceptibility testing.

Results: A total of 295 isolates were collected. Candida albicans was the most common species isolated (34.2%), followed by C. glabrata (21.4%), C. parapsilosis (17.6%), C. tropicalis (8.8%), C. krusei (2%) and C. lusitaniae (2%). Other Candida and non-Candida species accounted for approximately 3% and 0.9% of the isolates, respectively. There was an outbreak of C. auris in one hospital, causing 29 candidaemias (9.8%) in the study period. Antifungal susceptibility testing was performed with EUCAST reference procedures. The rate of fluconazol-susceptible isolates was 67.12%. There was no fluconazole-resistant or intermediate C. albicans strain. Most C. glabrata strains (95.2%) were fluconazole-intermediate (MIC 0.015-32) and a few (4.8%) fluconazole-resistant (MIC ≥64). Among C. parapsilosis and C. tropicalis isolates, 3.8% and 4% were fluconazole-intermediate, respectively, and no isolate was found to be fluconazole-resistant. Trailing effect to azoles in C. tropicalis was not prominent. Echinocandin-resistance was very rare (0.7%), and was detected only in one case of candidaemia due to C. glabrata and in another due to C. krusei of all isolates. Resistance to amphotericin B was not documented. Compared with a prior Spanish surveillance study, C. glabrata has risen and C. auris has erupted in our ecology.

Conclusions: Our study showed the current epidemiology of yeast fungemia in Spain. C. albicans remains the most common specie isolated. The rate of candidaemia caused by C. glabrata has risen, being the second most frequently isolated species. C. auris has rooted itself in one hospital, causing a nosocomial outbreak. Finally, there is a low rate of echinocandin-resistant strains in Candida species.