Amended Abstract

Introduction

Antimicrobial resistance in Enterobacteriaceae is a major public health concern that is driven by the multidrug resistance leading to inactivation of synthetic polymers and subsequent and death. Resistance to antimicrobial agents may occur due to a variety of different resistance mechanisms.

- The main mechanism in gram-positive and gram-negative bacteria in the enteric flora is the modification and inactivation of the antimicrobial agents, often by acquiring plasmids.
- Enterobacteriaceae are a common cause of hospital-acquired infections due to their ability to adapt to different environments and modulate their drug resistance.

Plasmid- and transposon-encoded resistance genes are prevalent in Enterobacteriaceae and could be spread to other species through horizontal gene transfer. This transfer can result in the emergence of multidrug-resistant isolates, which pose a significant challenge to public health.

Materials and Methods

- A total of 3,830 clinical isolates were collected in hospitals in Asia-Pacific (n=851), Europe (n=2,365), and Latin America (n=614). Isolates were susceptibility (S) tested using the reference broth microdilution method. CLSI and EUCAST interpretive criteria were applied. CRE isolates were screened for modifying enzymes (AME).

Results

- In total, 3,375 cultures were included in the study.
- Isolates were susceptibility (S) tested using the reference broth microdilution method. CLSI and EUCAST interpretive criteria were applied. CRE isolates were screened for modifying enzymes (AME).

Conclusions

- Plasmid was active against Enterobacteriaceae isolates, including isolates exhibiting ESBL, PSE, and carbapenemase-producing Enterobacteriaceae. These data support the current development plan for plasmid and resistance genes caused by resistant Enterobacteriaceae when treated with antimicrobials.

Acknowledgements

This study was performed by JMI Laboratories and supported by Achaogen, which included funding for services related to preparing this poster.

References

Activity of Plazomicin and Comparator Agents Tested Against Recent Clinical Isolates Collected in Asia-Pacific, Europe, and Latin America

M. Castanheira, J.M. Street, M. Deshpande, R.E. Mendes, R.K. Flamm

JMI Laboratories, North Liberty, Iowa, USA

Plazomicin is very active against Enterobacteriaceae, some Pseudomonas aeruginosa, and Staphylococcus spp., including methicillin-resistant (MRSA) isolates.

- In this study, we evaluated the activity of plazomicin and comparators tested against a collection of 3,830 clinical isolates collected in Asia-Pacific, Europe, and Latin America during 2015 that comprised 3,375 cultures. Isolates were susceptibility (S) tested using the reference broth microdilution method. CLSI and EUCAST interpretive criteria were applied. CRE isolates were screened for modifying enzymes (AME).

Materials and Methods

- A total of 3,830 Enterobacteriaceae, 252 gram-positive cocc...