INTRODUCTION

- Omadacycline (OMC) is the first antibiotic in a new class of compounds, the aminomethylcyclines. It is resistant to inactivation by beta-lactamases, including carbapenemase-producing strains, and has in vitro activity against both aerobic and anaerobic Gram-positive and Gram-negative bacteria, including many drug-resistant strains.

- Modifications in the chemical structure of OMC allow it to overcome the two main mechanisms of inactivation by beta-lactamases: (1) the formation of an acetylated derivative by the action of the class C beta-lactamases and (2) pseudooctahedral conformation caused by the presence of 3-desoxy-3-deaminohexose.

- Omadacycline (OMC) is the first antibiotic in a new class of compounds, the aminomethylcyclines. It is resistant to inactivation by beta-lactamases, including carbapenemase-producing strains, and has in vitro activity against both aerobic and anaerobic Gram-positive and Gram-negative bacteria, including many drug-resistant strains.

RESULTS

- Table 1: Subject Population by Geographic Region and Country
- Table 2: Baseline Area (cm²) of Primary ABSSSI Lesion by Geographic Region
- Table 3a: Pathogen Recovery by Geographic Region (mITT population)
- Table 3b: Pathogen Recovery by Geographic Region (CE population)
- Table 4: Baseline Pathogenic Organisms by Region (micro-mITT Population)

REFERENCES


CONCLUSIONS

- Omadacycline (OMC) and linezolid (LZD) had similar efficacy and safety profiles in the treatment of ABSSSI within the populations assessed in the OASIS trial, regardless of geographic region.

ACKNOWLEDGMENTS

This study was supported by Paratek Pharmaceuticals, Inc. and Vertex Pharmaceuticals, Inc. The authors thank the following companies for providing support: Scientific Community Group.