A large common point source nosocomial outbreak caused by ESBL-producing *Enterobacter cloacae* at one Belgian university hospital

2017-04-23
ECCMID Vienna OS0316

1 Infection control unit and clinical microbiology laboratory, CHU UCL Namur, 5530 Yvoir, Belgium
2 Intensive Care Unit Dept, CHU UCL Namur, 5530 Yvoir, Belgium
3 Anesthesiology Dept., CHU UCL Namur, 5530 Yvoir, Belgium
4 Infectious Diseases Unit, Dept. of Internal Medicine, CHU UCL Namur, 5530 Yvoir, Belgium
5 Cardiothoracic surgery Dept., CHU UCL Namur, 5530 Yvoir, Belgium CHU Dinant-Godinne UCL Namur, 5530 Yvoir, Belgium
• **University hospital**
 - 3 hospitalization sites (St Elisabeth Namur, Mont-Godinne, Dinant)
 - Bed Size: 946 beds (4300 Employees, 600 MDs)
 - Population of 450,000 inh. (Province of Namur)
 - 42,000 patients adm.; 500,000 polyclinic visits, 120,000 day care visits/year

• **Full medical coverage + specialized poles of activity**
 - onco-hematology, (autogenic/allogenic HSCT),
 - 400-500 cardiac surgery interventions /year
 - Cardiothoracic surgery: 30 lung transplant recipient/year
First episodes of clustered infections caused by ESBL-producing E. cloacae (I)

- **Alert triggered on Nov. 26th 2015**: post-operative infections by ESBL-producing *E. cloacae* in 4 cardiac surgery patients hospitalized in ICU at the time of microbiological sampling/result

- **Visit of ICUs** for observation of routine clinical practices

- **Reinforcement** of hand hygiene and infection control measures

- **Revision of care policies** (inhalation therapy, respiratory procedures, cleaning/disinfection practice of materials/equipment and environment)
Occurrence of the first clustered cases of ESBL-positive *E. cloacae* infections in ICU patients (Nov. 2015)

Patients 1 & 2 transferred from the same hospital; no screening specimens obtained upon admission

<table>
<thead>
<tr>
<th>Patient number</th>
<th>Age (yrs)</th>
<th>Date of Admission</th>
<th>Date of Intervention</th>
<th>Date of first isolation</th>
<th>Anatomical site</th>
<th>Infection</th>
<th>Clinical outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>84</td>
<td>8/11/2015</td>
<td>9/11/2015</td>
<td>12/11/2015</td>
<td>Blood, ETA*</td>
<td>Sepsis, Pneumonia</td>
<td>Died (day 4)</td>
</tr>
<tr>
<td>P2</td>
<td>64</td>
<td>5/11/2015</td>
<td>10/11/2015</td>
<td>16/11/2015</td>
<td>Sternum, ETA</td>
<td>Sternitis, wound abscess</td>
<td>Chronic morbidity</td>
</tr>
</tbody>
</table>

*ETA= Endotracheal aspirates
Four patients in two different ICU units (ICU A and ICU B)
Monthly incidence of 3rd Gen ceph-resistant \textit{Enterobacter cloacae} isolates detected in hospitalized patients (Mont-Godinne-2015)

Nr isolates (1/patient)

<table>
<thead>
<tr>
<th>Month</th>
<th>E. cloacae (all)</th>
<th>E. cloacae C3G-R (AmpC)</th>
<th>E. cloacae C3G-R (ESBL+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan-15</td>
<td>20</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Feb-15</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mar-15</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Apr-15</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May-15</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jun-15</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jul-15</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aug-15</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sept-15</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oct-15</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nov-15</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dec-15</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Jan-Oct-15: 4/18 ESBL +
Nov-Dec-15: 20/24 ESBL +
First episode of clustered infections caused by ESBL-producing *E. cloacae* (II)

- **Progression of the outbreak** despite reinforced infection control measures (new carriers identified in several wards)
- **Intensification of surveillance cultures** (3x/week; collection of respiratory samples for all CS patients in ICU)
- **Cohorted nursing** with additional designed personnel
- **Repeated visits** to ICU and to OR (12/2015)
 - Observation of routine care practice
 - Microbiological sampling of the environment
 - Revision of selected procedures with altered standard practice (intubation/extubation, respiratory support care)
 - Reinforced cleaning disinfection of environment
- **Stop of lung transplantation programme** (10/12/2015)
- **Closure of CS hospitalization unit** to new admissions and **stop of all cardiac surgical activities** (during 2 weeks)

Situation considered under control by Jan. 15, 2016
Second epidemic wave of ESBL-producing *E. cloacae* (May-Sept. 2016)

Three infected CS patients
(sternitis (n=2), Pneumonia (n=1))

Rectal swab surveillance culture 3x/week
In CS unit and ICU until Wk 29
From Wk 30: Oropharyngeal swab surveillance culture before and after surgery / upon return in ICU

Rectal swab
Oro-pharyngeal asp
LRT aspirate
Surgical wound
Deep-seated infection

Wk18 Wk19 Wk20 Wk21 Wk22 Wk23 Wk24 Wk25 Wk26 Wk27 Wk28 Wk29 Wk30 Wk31 Wk32 Wk33 Wk34 Wk35 Wk36 Wk37 Wk38

5 cases of pneumonia
(3 in CS patients)

Attack rate: 50% (June-July 2016)
Microbiological investigations

- Typing of ESBL-producing *E. cloacae* isolates

Single cluster of *E. cloacae* (17/20 strains) associated with single Rep-PCR type (DL type 11)

Similar antibioresistance type:
(C3-G: I/R, Genta- Tobra-R, Cipro-I, SXT-R)
Carbapenem-S

Genotyping of resistance:

- $bla_{CTX-M-15}$ (+ bla_{TEM-1})
- Aminoglycoside: $aacC2$
- Fluoroquinolones: $aac-6’-Ib-cr$, $qnrB$

-> **Clonal outbreak**
MLST type= **ST190** (not very prevalent/widespread clone)

Dendrogram of the isolates

Same isolate in both periods (phase I and II)
Case definition

- ESBL-producing *E. cloacae* in a respiratory sample of patients hospitalization in the ICU (period Nov-Dec. 2015)

- ESBL-producing *E. cloacae* (C3rdG, Genta-R, Cipro-I) in cardiac surgery patient (whatever the hospitalization unit) in any type of culture specimens (clinical specimens or surveillance culture) (period Jan.-Sept. 2016)

- Patients categorized as colonized or infected according to CDC definitions on the basis of retrospective review of medical records
Timing of colonisation by ESBL-producing *E. cloacae* from cardiac surgery intervention

- **According to patient status:**
 - Infected: mean: 1,4d; median: 2 d
 - Colonized: mean: 6,5d; median: 4 d

- **According to sampling site:**
 - Rectal swab: mean: 5,6 d; median 5 d *(2 negative rectal swab results before becoming positive)* (low inoculum, oral -> bowel, antimicrobial prophylaxis)
 - Respiratory tract: mean: 1,4 d; median 1 d *(several patient with positive RT and negative rectal swab culture results)*

Implementation of screening in the OR immediately after intervention *(at time of retransfer to ICU)*

New hypothesis in favor of early point source acquisition in the OR (rather than cross-transmission in ICU or in CS ward)
Case-control study assessing risk factors for carriage of ESBL-producing *E. cloacae*

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Case patients (n=26)</th>
<th>Control (n=49)</th>
<th>OR</th>
<th>CI95%</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, Mean years</td>
<td>63.8</td>
<td>64.4</td>
<td></td>
<td></td>
<td>.98</td>
</tr>
<tr>
<td>Male</td>
<td>20 (77)</td>
<td>38 (78)</td>
<td></td>
<td></td>
<td>.95</td>
</tr>
<tr>
<td>Previous history of stay to the ICU</td>
<td>25 (96)</td>
<td>44 (89)</td>
<td>2.8</td>
<td>0.3-23.6</td>
<td>.33</td>
</tr>
<tr>
<td>Duration of ICU stay > 7 days</td>
<td>4 (15)</td>
<td>13 (27)</td>
<td>0.5</td>
<td>0.1-1.7</td>
<td>.27</td>
</tr>
<tr>
<td>Inhalation therapy/kinesitherapy</td>
<td>21 (81)</td>
<td>41 (84)</td>
<td>0.8</td>
<td>0.2-2.8</td>
<td>.75</td>
</tr>
<tr>
<td>Exposure to intubation</td>
<td>22 (85)</td>
<td>42 (86)</td>
<td>1.1</td>
<td>0.3-4.0</td>
<td>.89</td>
</tr>
<tr>
<td>Exposure to any type of surgery</td>
<td>25 (96)</td>
<td>39 (80)</td>
<td>6.4</td>
<td>1.0-42.3</td>
<td>.054</td>
</tr>
<tr>
<td>Exposure to cardiac surgery</td>
<td>24 (92)</td>
<td>7 (14)</td>
<td>72</td>
<td>19.9-259.9</td>
<td><.0001</td>
</tr>
<tr>
<td>Exposure to TOE during surgery</td>
<td>24 (92)</td>
<td>6 (12)</td>
<td>89</td>
<td>23.5-314.4</td>
<td><.0001</td>
</tr>
<tr>
<td>Rectal probe for temperature monitoring during surgery</td>
<td>22 (85)</td>
<td>14 (29)</td>
<td>14</td>
<td>4.5-41.8</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Cardiac surgery: case patients had more complex and longer interventions
- valvular prosthesis surgery (n=14);
- Thoracic surgery (n=3; 2 bi-pulmonary transplantation),
- Coronar artery by-pass graft ing CABG (n=7)

Univariate conditional logistic regression analysis for the calculation of risk factors
tailed test of significance; P value <.05 considered statistically significant
Numerous breaks in procedures related TEE in the OR during cardiac surgery

Lack of appropriate maintenance/cleaning of the ultrasonographic instruments dedicated for cardiac surgery (blood stains/spots,...)

Inappropriate procedure of cleaning/disinfection of TEE probe (≠ high level disinfection)

Sterile lubrication gel K-Y monodose (5g) not always traced as single use

No use of protective sheath of the TEE probe during intervention, proximity contact of the probe with heater-cooler reservoir

Suboptimal storage conditions
Multiple sampling of environment and equipment/material in Cardiac surgery OR

7 days swab and enrichment culture on Letheen (lecithin/polysorbate) broth and on McConkey agar + ceftazidime (2 µg/ml)

>50 samples obtained: None were culture-positive for *Enterobacter cloacae*

All swab samples from TTE equipment: culture-negative

- Computers, keyboards, pads,....
- Artificial respirator circuit and intubation equipment set, heat exchanger CEC equipment
- Water, Solution, Liquids (cardioplegia solutions, antiseptic solutions, local anesthetics, sterile gel for TEE probe,)
- Tip/connector of thermal probes (rectal, esophageal, vesical)
- Transesophageal echocardiographic (TOE) equipment ((transducer tip, shaft, handle, socket,....)
Report of Cardiac Surgery Nosocomial Outbreaks Associated with Transesophageal Echocardiography

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Country</th>
<th>Organism</th>
<th>Nr of affected patients</th>
<th>Duration of outbreak</th>
<th>Causal Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levy (2003)</td>
<td>France</td>
<td>Legionella pneumophila</td>
<td>3</td>
<td>NR</td>
<td>Probable; contamination of TEE rinsing water</td>
</tr>
<tr>
<td>Kanemitsu (2004)</td>
<td>Japan</td>
<td>E. cloacae</td>
<td>17</td>
<td>2 months</td>
<td>Proven; TEE probe contamination</td>
</tr>
<tr>
<td>Bancroft (2006)</td>
<td>USA</td>
<td>E. coli</td>
<td>8</td>
<td>1 month</td>
<td>Unproven; TEE probe contamination</td>
</tr>
<tr>
<td>CDC MMWR (2011)</td>
<td>USA</td>
<td>P. aeruginosa</td>
<td>16</td>
<td>2 months</td>
<td>Proven; multidose ultrasound gel contamination</td>
</tr>
<tr>
<td>Vetter (2012)</td>
<td>Switzerland</td>
<td>S. marcescens</td>
<td>91</td>
<td>12 months</td>
<td>Proven; TEE probe contamination</td>
</tr>
<tr>
<td>Suleyman (2015)</td>
<td>USA</td>
<td>ESBL+ Salmonella enterica serov. Isangi</td>
<td>19</td>
<td>2 months</td>
<td>Probable; TEE probe contamination</td>
</tr>
</tbody>
</table>

OUTBREAK DATABASE (https://www.outbreak-database.com)
« Disconnect the socket » strategy

- **Repeated negative microbiological culture** of TEE probe specimens (12 swab samples/obtained at different time intervals)

- **Lack of visual (macroscopic) defects** of the TEE probe tip
 (Presence of microscopic surface scratches/defects of the probe tip possible/probable but not investigated...)

- **Decision to remove the 3D TEE probe** taken on Aug 8th, 2016 led to rapid termination of the outbreak
 (1 single asymptomatic intestinal carriage, 64 days after intervention)

No single case since Sept 2nd, 2016

....and the light bulb will go off
Major consequences of the outbreak

- Period May-Sept. 2016 (94 days)

 - **42 patients affected** (33 colonized, 9 infections)
 - **Attack rate: 50%** (40 of 81 pts with cardiac surgery and per-operative TEE) colonized/infected (respiratory tract/rectal swab) in the week after surgery
 - **9 infections** (pneumonia [n=7]; sternitis/mediastinitis [n=2])
 - **30-days crude mortality rate: 9.5%** (4 possible/probable link)
 - **Increase in the median LOS vs control patients**
 - Colonization : +1 day in ICU ; + 5 days in LOS
 - Infection : + 10 days in ICU; + 17 days in LOS

 Decreased medical activity (ward closure, stop of cardiac/lung transplantation surgery), major changes in organization at all levels
Conclusion

- Large point source outbreak caused by an ESBL-producing *E. cloacae* traced to contamination of TEE probe used intra-operatively in cardiac surgery patients

- Major medical and economical impact with decrease of activity and modifications of care organization

- Central role of the infection control team in the coordination of the outbreak management and implementation of appropriate containment strategies