EV0423
ePoster Viewing
Susceptibility testing methods

Performance of CarbR GeneXpert(R) assay against culture and PCR for the detection of carbapenem-resistant Enterobacteriaceae (CRE) from rectal swabs

Noura Al Merdasi¹, Wafaa Jamal², Vincent Rotimi*³

¹Muabarak Al Kabeer Hospital, Microbiology, Hawally, Kuwait
²Microbiology Department, Faculty of Medicine, Kuwait University, Po Box 24923, Safat, Jabriya, Kuwait
³Faculty of Medicine, Kuwait University, Microbiology, Safat, Kuwait

Background: Species belonging to family Enterobacteriaceae colonize mainly the gut of humans and animals. They cause both community- and hospital-acquired infections. Recently, carbapenem-resistant Enterobacteriaceae (CRE) has emerged as a global threat around the world. These emerging pathogens cause difficult-to-treat infections with high morbidity and mortality. This study was undertaken to evaluate the performance of CarbR GeneXpert assay (CGXA) against culture and PCR in the detection of CRE from rectal swabs.

Material/methods: A total of 100 non-repetitive rectal swabs, in duplicates, were collected from patients in the high dependency units of our hospital. They were investigated simultaneously by culture and the CGXA. The culture method was by direct inoculation on a MacConkey agar plate on which a 10µg meropenem disk was placed and incubated in air at 37°C for 24 h. After overnight incubation, isolates identified as CRE were confirmed by PCR. CGXA was performed according to manufacturer’s protocol. Five isolates with known metallo-β-lactamase (MBL) genes were included in the assay.

Results: Of the 100 samples, 6 (6%) were positive for a carbapenemase gene, 5 of which were correctly detected by CGXA confirmed by PCR. They were 4 Klebsiella pneumoniae (positive for blaNDM), 1 E. coli (blaOXA-48) negative by CGXA but positive by PCR, and 1 Enterobacter aerogenes (blaNDM). The sensitivity and specificity of the CGXA, using the PCR assay as the reference test standard, were 80% and 98.9%, respectively. The prevalence of CRE colonization in our high-risk population by CGXA was 5%. All the 5 in-house positive control strains were correctly detected by CGXA. Recent travel history was significantly associated with CRE colonization (p<0.005). The turn-around–time from specimen to result was 1 h compared with culture and subsequent PCR of 48 h.

Conclusions: With such performance, the CGXA can be readily incorporated into any busy routine clinical microbiology laboratory. The rapid detection of CRE harboring MBL genes directly from rectal swabs within 1 h should assist in optimizing decision-making on contact-precautions and early detection of outbreaks within the hospital.