EUCAST breakpoints

Johan W. Mouton MD PhD FIDSA
Professor pharmacokinetics and pharmacodynamics

Disclosures

Research grants – advisory boards – speaker

LAB REPORT

- Provides Clinician/Consultant guidelines how to optimally treat a patient (Freely translated from EUCAST guideline)
Is susceptibility (MICs) related to (clinical) outcome? If yes, which values (breakpoints) make the difference?

Efficacy of the drug

Potency of a drug (MIC) Exposition to the bug (PK)

ACTIVITY in vitro (MIC) CONCENTRATIONS in vivo (PK) DOSING regimen

ANTIMICROBIAL EFFICACY (Microbiological Cure)

Other factors

CLINICAL EFFICACY (Clinical Cure)
MIC

Measure of Potency

MIC

Lowest concentration with no visible growth after 18 hour incubation

Dose/MIC

- **EC50**: 43.69
- **R²**: 0.9938

Probability of cure after treatment with fluconazole

Oropharyngeal Candidiasis n=132

- **Culture-results with MIC-values**
 - Individual Dose
 - MIC-values per individual
 - Determine Dose/MIC for each patient
 - Microbiological outcome (candida cured)
 - Clinical outcome

- **Probability of cure correlates with Dose/MIC**
- **POSITIVE** correlation with Dose
- **INVERSE** correlation with MIC

Rodriguez- Tudela et al, AAC 2007
If Dose is known because of the standard dose e.g. 400 mg ~ 400 mg/L
And a Dose/MIC of 100 is required
It follows that the breakpoint is 400/100 = 4 mg/L

It is thus, however, slightly more complicated than just dose........

- Usually, dose–effect relationships are not really known
- Development
- How to adjust for altered clearances

Dose is just a means to reach adequate concentrations

ACTIVITY
in vitro (MIC)

CONCENTRATIONS
in vivo (PK)

DOISING regimen

ANTIMICROBIAL EFFICACY
(Microbiological Cure)

OTHER factors

CLINICAL EFFICACY
(Clinical Cure)
Pharmacokinetic parameters: Measures of Exposure

AUC is usually linearly related to Dose

Dose x 2 = AUC x 2
Dose x 4 = AUC x 4
Lowest concentration with no visible growth after 18 hour incubation

MIC = 2 mg/L

Pharmacokinetic Parameter (and Dose)

Thus, we have to:
- Establish a relationship between the MIC in vitro and concentrations in vivo (thus, dosing regimens)
- Determine which dosing regimens are optimal for treatment in relation to the MIC

Susceptible (S)
A micro-organism is defined as susceptible by a level of antimicrobial activity associated with a high likelihood of therapeutic success. A micro-organism is categorized as susceptible by applying the appropriate breakpoint in a defined phenotypic test system.

Intermediate (I)
A micro-organism is defined as intermediate by a level of antimicrobial activity associated with an indeterminate therapeutic effect. A micro-organism is categorized as intermediate by applying the appropriate breakpoints in a defined phenotypic test system.

Resistant (R)
Bacteria are defined as resistant by a level of antimicrobial activity associated with a high likelihood of therapeutic failure. A micro-organism is categorized as resistant by applying the appropriate breakpoint in a defined phenotypic test system.

Note: This breakpoint may be altered with legitimate changes in circumstances.
A high likelihood of success for everyone (S)

WE AIM FOR:

Hitting the PK/PD target

Setting a Breakpoint – PK/PD (example 1)

1. **Determine the PK/PD Target**
 - e.g. value of the PK/PD Index (animal studies, clinical studies)

2. **Estimate Exposure**
 - from the dosing regimen and PK, including population variability

3. **Calculate PK/PD Breakpoint**
 - from $PK/PD \text{ target} = PK/PD \text{ Index}$ (animal studies, clinical studies)
Any idea where we are today?

No idea... may be a mouse?

Might be a human, though...

An elephant... Today it is an elephant!

THE TARGET IS THE MICRO-ORGANISM
4. Mortality

Neutropenic Mouse Model

1. Neutropenia induced by 2 injections of cyclophosphamide on days -4 and -1
2. Bacteria injected into thighs on day 0 (10^6 cfu)
3. Treatment (usually given SQ) started 2 hr after infection and continued for 1-5 days

5.106 cfu

Cyclophosphamide i.p.
Antimicrobial therapy s.c.

Time h

Treatment

-96 -24 -2.0 6 12 18 24

Homogenization thigh
CFU counts

Relationships Between 24-Hr fAUC/MIC and Efficacy against Pneumococci for Fluoroquinolones in Animals

- A clear relationship exists between exposure and effect
- A maximum effect is reached at ratio's of 25-35 (mortality)
Relationship between fAUC/MIC and Effect
121 patients with S. pneumoniae respiratory infection

fAUC/MIC cut-off ~34

- Relationship between fAUC/MIC ratio & microbiological response from a total 121 patients with respiratory tract infection involving S. pneumoniae.
- fAUC-MIC > 34 had 92.6% response rate.
- fAUC-MIC < 34 had 66.7% response rate.

Quantitative relationship: exposure in mice and men

Neutropenic Mouse Thigh-Infection Model
1. Neutropenia induced by 2 injections of cyclophosphamide on days -4 and -1
2. Bacteria injected into thighs on day 0 (10⁶-7)
3. Treatment (usually given SQ) started 2 hr after infection and continued for 1-5 days
4. Thighs removed, homogenized, serially diluted and plated for CFU determinations
Curve / effect description

Inoculum

In Vivo Static Effect

One log drop Effect

Plasma & Interstitial fluid

BOUND

FREE

BOUND

FREE
Pharmacodynamic target

exposure in mice and men

![Graph showing AUC/MIC exposure for mice and humans.]

SETTING A BREAKPOINT –PK/PD

(Example 1)

- **Determine the PK/PD target**
 - e.g., value of the PK/PD Index
 - (animal studies, clinical studies)

- **Estimate exposure**
 - from the dosing regimen and PK, including population variability

- **Calculate PK/PD breakpoint**
 - from PK/PD target = PK/PD Index
GOOD Clinical Practice

Be sure that the \(\text{fAUC/MIC} \) ratio is at least appr. 34 in every patient.

\[\text{AUC} \]
\[\text{MIC}\]

Clinical practice:

When starting treatment, we do not know:

- the AUC in the individual patient

Levofloxacin 500 mg

\(\text{fAUC} = 30-50 \text{ mg/L} \)
Pharmacokinetics

Some people are more equal than others…
On the average, this duck is dead

SETTING A BREAKPOINT – PK/PD

(Example 1)

Determine the PK/PD target – e.g. value of the PK/PD index (animal studies, clinical studies)

Estimate exposure from the dosing regimen and PK, including population variability

Calculate PK/PD breakpoint from PK/PD target = PK/PD index (animal studies, clinical studies)

The fAUC is calculated for 10,000 patients using MCS. This results in a probability distribution of AUCs. The fAUC/MIC is calculated for each MIC.
The fAUC is calculated for 10,000 patients using MCS. This results in a probability distribution of AUCs. The fAUC/MIC is calculated for each MIC.

Mouton et al., 2004

The fAUC is calculated for 10,000 patients using MCS. This results in a probability distribution of AUCs. The fAUC/MIC is calculated for each MIC.
The fAUC is calculated for 10,000 patients using MCS. This results in a probability distribution of AUCs. The fAUC/MIC is calculated for each MIC.

levofloxacin 500 mg x 1 oral

Mouton et al., 2004

The fAUC is calculated for 10,000 patients using MCS. This results in a probability distribution of AUCs. The fAUC/MIC is calculated for each MIC.

levofloxacin 500 mg x 1 oral

Mouton et al., 2004

The fAUC is calculated for 10,000 patients using MCS. This results in a probability distribution of AUCs. The fAUC/MIC is calculated for each MIC.

levofloxacin 500 mg x 1 oral

Mouton et al., 2004
Levofloxacin / Streptococcus pneumoniae
Antimicrobial wild type distributions of pathogens – reference database

High dose levofloxacin
2x 500 mg, or 750 mg
AUC 70-80

Target
35 = 70 /2
"He chose poorly"
-Knight from Indiana Jones: The Last Crusade

GOOD Clinical Practice

Be sure that the fAUC/MIC ratios is at least appr. 34 in every patient.

This includes patients with a high clearance.

Bugs with MICs that can be expected.

SETTING A BREAKPOINT –PK/PD (example 2)

DETERMINE THE PK/PD TARGET e.g. value of the PK/PD Index

ESTIMATE EXPOSURE from the dosing regimen and PK, including population variability

CALCULATE PK/PD BREAKPOINT from PK/PD target = PK/PD Index
Are All Antimicrobials Created Equal???

Pharmacokinetic parameters: Measures of Exposure

Time > MIC dependent on dose frequency

Total daily dose similar
Infection Thigh model 2 strains/mouse, 1/ thigh

Cyclophosphamide i.p.
Antimicrobial therapy s.c.

Time h
-96 -24 -20 3 6 9 12 18 21 24
5.10^6 cfu

Homogenization thigh CFU counts

Efficacy Q3 > Q6 > Q12 > Q24 Primarily T (dependent)
Efficacy Q3 < Q6 < Q12 < Q24 Primarily Cmax (D) dependent
Efficacy Q3 = Q6 = Q12 = Q24 Primarily AUC (TDD) dependent

Levofloxacin in *S. pneumoniae* infection in mice

Relationship between T>MIC, Peak, AUC

Each dot represents one mouse / dosingregimen.

Based on data from Scaglione & Mouton, 2001, 2003
ESCMID Online Lecture Library © by author
Literature Review for T>MIC for Beta-Lactams Versus Mortality in Animal Models

- At least 48 hours of treatment
- Mortality 80-100% in untreated controls
- Pharmacokinetics provided to calculate magnitude of PK/PD parameter
- Mortality recorded within 24 hrs after last dose of drug
- Data from 3 animal species and 4 sites of infection

Ceftazidime PD in neutropenic mice

Time > MIC Required for a Static Effect After 24-hours of Therapy with Four Cephalosporins

<table>
<thead>
<tr>
<th>Drug</th>
<th>Enterobacteriaceae</th>
<th>S. pneumoniae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceftriaxone (T)</td>
<td>72 (66-79)</td>
<td>74 (69-78)</td>
</tr>
<tr>
<td>Ceftriaxone (F)</td>
<td>38 (34-42)</td>
<td>39 (37-41)</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>38 (36-40)</td>
<td>38 (36-40)</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>36 (27-42)</td>
<td>39 (35-42)</td>
</tr>
<tr>
<td>Cefpirome</td>
<td>35 (29-40)</td>
<td>37 (33-39)</td>
</tr>
</tbody>
</table>

Data from Craig
Protein binding:
Effect on Penetration of β-Lactams into Rabbit Peripheral Lymph

Correlation between protein binding and penetration

Activity of 4 Cephalosporins against Various Enterobacteriaceae with and without ESBLs

Change in Log10 CFU/Thigh over 24 Hours

ESBLs
Non-ESBLs

Time Above MIC (percent)

Clinical phase 3 study
PK-data
PK population model
Individual PK parameters
Individual exposure to CAZ %fT>MIC
Microbiological outcome
Clinical outcome

ESBLs Non-ESBLs

Craig & Andes ICAAC 2005

PK-data Culture-results with and without ESBLs
MIC-values per individual

ESCMID Online Lecture Library © by author

ESCMIID Online Lecture Library © by author
randomized, double-blind phase 3 clinical trial (NCT00210964):
- comparing the efficacy of ceftobiprole with the combination CAZ and linezolid
- Ceftazidime 3dd 2 gr 2h infusion
- Extensive and sparse sampling of ceftazidime

Numbers of patients in CAZ arm:
- N=390 patients included
- N=170 with MIC
- N=154 with MIC and PK-estimates
- 220 without Gram negatives in cultures
- 16 without PK estimates

Ceftazidime in patients with nosocomial pneumonia
Muller et al, JAC 2013 68:900-906

PK/PD of ceftazidime in Clinical Study
- 154 patients with nosocomial pneumonia (including VAP)
- PK parameters determined in every patient
 - Sparse sampling; covariates; population PK
- MICs of infecting micro-organisms
- Individual exposures to CAZ (%T>MIC)
 - Categorised (%T>MIC per 10%)
- Eradication rate per exposure group

Exposure-response Emax model
- Baseline response 50%
- Max response 99.7%
- 50% Effective PD index (E150): 47 %T>MIC
Ceftazidime in patients with nosocomial pneumonia

Muller et al, JAC 2013 68:900-906

Probability plot of the logistic regression analysis for ceftazidime showing the relationship between %T>MIC (Gram-negatives at baseline/EOT) and probability of cure at TOC

Ceftobiprole %T>MIC (Gram-negatives at baseline/EOT) and probability of cure at TOC (nosocomial pneumonia [excl. VAP, n=82])

Muller et al., AAC 2014

ESCMID Online Lecture Library © by author
Quantitative relationship: exposure in mice and men

<table>
<thead>
<tr>
<th>Time Above MIC (% of Interval)</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T>MIC mouse</td>
<td>~40-50%</td>
</tr>
<tr>
<td>T>MIC human</td>
<td></td>
</tr>
</tbody>
</table>

Quantitative relationship:
exposure in mice and men

- **Mouse**:
 - Time Above MIC (% of Interval)
 - Mortality (%)

- **Human**:
 - Time Above MIC (% of Interval)
 - Mortality (%)

Exposure in mice and men

- **Bacterial Eradication (percent)**
 - 0 - 100%

Probability of Target Attainment - Cefazidime

- **Ceftazidime 1000 mg x3**
 - 95% percentile
 - Mean

It is not only for Mice!!

- **Ambrose et al, CID 2007**

EUCAST rationale document

- **BP = 4 mg/L**

ESCMID Online Lecture Library © by author
Susceptible (S)
A micro-organism is defined as susceptible by a level of antimicrobial activity associated with a high likelihood of therapeutic success. A micro-organism is categorized as susceptible by applying the appropriate breakpoint in a defined phenotypic test system.

Note: This breakpoint may be altered with legitimate changes in circumstances.

Intermediate (I)
A micro-organism is defined as intermediate by a level of antimicrobial activity associated with indeterminate therapeutic effect. A micro-organism is categorized as intermediate by applying the appropriate breakpoints in a defined phenotypic test system.

Note: This breakpoint may be altered with legitimate changes in circumstances.

Resistant (R)
Bacteria are defined as resistant by a level of antimicrobial activity associated with a high likelihood of therapeutic failure. A micro-organism is categorized as resistant by applying the appropriate breakpoint in a defined phenotypic test system.

Note: This breakpoint may be altered with legitimate changes in circumstances.

WWW.EUCAST.ORG

Mouton et al, CMI 2012

www.eucast.org
EUCAST Website resources

- http://www.EUCAST.org
- All EUCAST documents FREE DOWNLOAD
- http://mic.eucast.org/Eucast2
- MIC distributions
- Zone diameter distributions
- MIC-zone diameter correlations

Implications for breakpoints

Susceptibility (MICs) are related to (clinical) outcome

High

Low
Susceptibility (MICs) are related to (clinical) outcome?

Breakpoint values make the difference – but include PK!!

Conclusions

• PK/PD breakpoints reflect the relationship between exposure and clinical outcome
• PK/PD breakpoints are dependent on dose, pharmacokinetic profile and pharmacodynamic target
• The pharmacodynamic target MAY differ by species (e.g. Gram- vs Gram+)
• EUCAST PK/PD breakpoints are based on clinical data if available and otherwise on animal data and other data. Rationale documents describe the background.