General overview of bacterial population structures

Hajo Grundmann

National Institute for Public Health and the Environment, Bilthoven
Rijksuniversiteit Groningen, NL
Topics

- Objectives for molecular typing of pathogens
- Diversity
- Confounding in molecular epidemiology
- The genetic population structure of nosocomial pathogens
Objectives for molecular typing of pathogens

To identify:

- transmissions
- major clones (genetic population structure)
- geographical dissemination
- secular trends
- evolutionary trajectories
- epidemiological success (coalescence)
Why networking typing information?

To describe the dissemination of certain pathogens at different geo-administrative levels:

- hospital
- communal
- regional
- national
- continental
- global
How to determine the ideal network approach?

Depending on the objectives, the reference level and the pathogens under study

- technical aspects
- mode of genomic evolution
- population structure
Test characteristics of molecular typing techniques for *Staphylococcus aureus*

<table>
<thead>
<tr>
<th>Technique</th>
<th>Time</th>
<th>Skill</th>
<th>Cost/Strain (€)</th>
<th>Lab. Invest (k€)</th>
<th>Comparative Fingerprint</th>
<th>ID</th>
<th>GV</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFGE</td>
<td>3-5 d</td>
<td>++</td>
<td>12</td>
<td>25</td>
<td>Comparative fingerprint</td>
<td>97.6</td>
<td>25.5</td>
</tr>
<tr>
<td>RAPD</td>
<td>1 d</td>
<td>+</td>
<td>3</td>
<td>15</td>
<td>Comparative fingerprint</td>
<td>86.3</td>
<td>47.4</td>
</tr>
<tr>
<td>AFLP</td>
<td>3 d</td>
<td>++</td>
<td>12</td>
<td>15</td>
<td>Comparative fingerprint</td>
<td>-</td>
<td>18.4</td>
</tr>
<tr>
<td>MLVA</td>
<td>1 d</td>
<td>++</td>
<td>3</td>
<td>15</td>
<td>Comparative fingerprint</td>
<td>99.3</td>
<td>59.3</td>
</tr>
<tr>
<td>MLST</td>
<td>5-7 d</td>
<td>+(+)+</td>
<td>60-80</td>
<td>50</td>
<td>Library</td>
<td>95.5</td>
<td>0.6</td>
</tr>
<tr>
<td>spa</td>
<td>1-2 d</td>
<td>++</td>
<td>24</td>
<td>50</td>
<td>Library</td>
<td>98.0</td>
<td>?</td>
</tr>
<tr>
<td>WGS</td>
<td>2 d</td>
<td>+++</td>
<td>60-100</td>
<td>100</td>
<td>Library</td>
<td>99.9</td>
<td>-</td>
</tr>
</tbody>
</table>
Discriminatory ability of molecular typing techniques for *S. aureus*
Constraints when identifying episodes of transmissions for hospital infection control

- Genetic diversity in catchment population (biological)
- Discriminatory ability (methodological)
- Hospital/ward admission rate (institutional)
Average waiting times until isolation of identical S. aureus strain under different assumptions
Observed waiting times: *S. aureus*
Waiting times under different ecological assumptions

- \(H_0 = \) no transmission, low ID
- \(H_a = \) only transmission, high ID
Observed waiting times: *P. aeruginosa*
Diversity of *Staphylococcus aureus* carriage strains in the UK

Expected average waiting times depend strongly on catchment population

<table>
<thead>
<tr>
<th>Area</th>
<th>Average Waiting Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community</td>
<td>245 days</td>
</tr>
<tr>
<td>Hospital</td>
<td>21 days</td>
</tr>
<tr>
<td>Intensive Care Unit</td>
<td>9 days</td>
</tr>
<tr>
<td>Observed</td>
<td>165 days</td>
</tr>
</tbody>
</table>
Diversity of *Staphylococcus aureus* carriage strains and *P. aeruginosa* from CF patients in the UK

![Genetic diversity of S. aureus in various environments](image)

- Community
- Hospital
- ICU
- *P. aeruginosa* (CF patients)
Genetic diversity of 950 strains of *P. aeruginosa* from the cystic fibrosis community in the UK

(Spe I macrorestriction analysis)
Different tree topologies

geneA

no recombination

geneB

frequent recombination
Multilocus sequence typing (MLST)

EMRSA 16
2,902,619 bp
Pairwise comparison of tree topologies:
Congruence test

Determining the genetic structure of the natural population of Staphylococcus aureus.

Pairwise comparison of tree topologies: Congruence test

Curran B, Jonas D, Grundmann H, Pitt T, Dowson C.
Clonal versus panmictic evolution

Split decomposition tree for *P. aeruginosa*
CIP resistance

Nuebel et al. 2013
ST22 tree rooted with ST1 and ST5
Sharing of mobile genetic elements in *S. aureus*
Dynamics of different mobile genetic elements in S. aureus

- phage (very frequent)
- genomic islands (frequent)
- SCCmec (rare)
- large chromosomal replacements (very rare)
Resumée

- Epidemiological inference drawn from molecular typing results requires careful consideration of methodological, biological and institutional parameters.
- Not all nosocomial pathogens are equal.
- Genetic population structures differ widely and analysis tools need to take them into account.
- Recombination and mobile genetic elements are the driving forces behind niche specialisation and evolution in bacterial pathogens.
Thanks to,

Doris Hartung, Freiburg
Daniel Jonas, Freiburg
Franz Daschner, Freiburg
Wolfgang Witte, Wernigerode
Ingo Klare, Wernigerode
Klaus Weist, Berlin
Sina Baerwolff, Berlin
Mike Behnke, Berlin
Frank Schwab, Berlin
Henning Rueden, Berlin
Petra Gastmeier, Hannover

Satoshi Hori, Tokio
Kenji Hiramatsu, Tokio
Adriana Tami, Nottingham
Muhammad Halwani, Nottingham

the medical students
and the infection control team of the
Nottingham University Hospital

Bob Winter, Nottingham
Gregor Tanner, Nottingham

David Aanesen, London
Ed Feil, Bath
Jessica Cooper, Bath
Brian Spratt, London
Daren Austin, London
Roy Anderson, London
Mat Holden, Cambridge
Janina Dordel, Cambridge

The European Science Foundation
The Wellcome Trust
The British Council
Bundesministerium fuer Frauen
Familie und Gesundheit
The European Centers for Disease
Prevention and Control