Validation of an in vitro model of *Stenotrophomonas maltophilia* and *Aspergillus fumigatus* biofilm.

Introduction

Biofilms are microbial communities in which cells attach to each other and/or on surfaces. They produce an extracellular matrix (ECM) composed of polymeric substances. *Aspergillus fumigatus* (Af) is a saprophytic filamentous fungi often found in cystic fibrosis patients (Zeng et al., 2014). These patients also carry 2 Gram negative bacteria, *Pseudomonas aeruginosa* (Pa) and *Stenotrophomonas maltophilia* (Sm) involved in morbidity and mortality in cystic fibrosis patients. Biofilms are communal structures of microorganisms which have been associated with a variety of persistent infections that may respond poorly to conventional antibiotic or antifungal chemotherapy. Biofilm with Af and Pa have been described but never between Af and Sm.

Aim of the study

To develop and to validate a biofilm associating *A. fumigatus* and *S. maltophilia*.

Methods

Sequential inoculation

- RPMI + SVF (10%)
- 37°C

Microscopic analysis

- Fluorescence
- Scanning electron

Results

- Bacteria Af ECM
- Sm + Af
 - Shorter ramifications (yellow circle) of Af after contact with Sm compared to Pa
- Pa + Af
 - Af seems to be destructed by Pa
 - Less inhibition for Af + Sm than Pa + Af
- Pa + Af
 - Strong inhibition of Af

Conclusion

For the first time, a biofilm of Sm and Af embedded in ECM was observed by microscopy. Only Af seems to be negatively affected by this interaction (changing phenotype; reduced growth rate).

Contact: francoise.botterel@hmn.aphp.fr