World wide resistance and multiresistance in *Escherichia coli*

Escherichia coli: an old friend with new tidings
Barcelona, Spain. 20 – 22 november, 2013

Dr. Rafael Cantón
Hospital Universitario Ramón y Cajal
SERVICIO DE MICROBIOLOGÍA Y PARASITOLOGÍA

© by author
Escherichia coli, the main pathogen

- Responsible for nosocomial & community acquired infections
- Associated with sepsis, severe and mild infections
- Causing high number of deaths in the world
- Acquiring resistance mechanisms, including
 - multi-drug-resistance mechanisms
 - emerging resistance mechanisms

sensor of evolution of antimicrobial resistance
Escherichia coli: exchange from different compartments

Adapted from Woerther et al. Clin Microbiol Rev 2013; 26: 644-58
World wide resistance in *Escherichia coli*

Difficulties to obtain prospective sequential data

- Absence of surveillance studies exclusively focused in *E. coli*
- Surveillance studies involving specific infections or anatomic locations, mostly focused in specific antibiotics
 - SENTRY (blood, urinary and intraabdominal isolates)
 - SMART (ertapenem and intraabdominal and urinary isolates)
 - TEST (tigecycline and selected Gram-negative pathogens)
 - MYSTIC (meropenem and selected Gram-negative pathogens)
- Data from surveillance studies partially and fractionally published according to:
 - specific geographic areas / countries
 - period of time
 - resistance problems
World wide resistance in *Escherichia coli*

The general perception (*difficult to disagree!*)

- Increasing prevalence of resistance to:
 - β-lactams: amoxicillin-clavulanate, extended spectrum cephalosporins (ESBLs), carbapenems (carbapenemases)
 - fluoroquinolones: isolates with topoisomerase mutations, plasmid mediated quinolone resistance mechanisms (PMQR)
 - aminoglycosides: isolates expressing modifying enzymes, methylases mediated resistance
 - other resistances: fosfomycin, trimetrophrim, trimetrophrim/sulfametoxyzol

- Emergence and dispersion of *multi-drug-resistance* isolates

- Dispersion of resistance isolates in different compartments
Multi-drug-resistance

- Cross resistance (class resistance)
 - a R mechanisms affecting antimicrobials from the same family
 - *E. coli* ciprofloxacin^R (topoisomerase mutations)

- Multi-resistance (co-resistance)
 - different R mechanisms affecting different families of antimicrobials
 - ESBL producing *E. coli*
 - Carbapenemase producing *E. coli*

- Pleiotropic resistance
 - a single R mechanisms affecting antibiotics from different families
 - AcrAB-TolC hyper-expressing *E. coli*
Co-resistance and multi-resistance (*genetic capitalisms*)

- Resistant bacteria tend to be more resistant (multi-resistant)
 - easiest selection under antimicrobial pressure
 - accelerated process in scenarios with high selection density
 - co-selection by different antimicrobials
 - easy acquisition or resistance genes
 - opportunity of resistance strains ("clonal persistence")
 - genetic platforms adapted to acquire resistance genes

Baquero, Coque, Cantón. ASM News 2003; 69: 547-51
Canton, Ruiz-Garbajosa Curr Opin Pharmacol 2011; 11:477-85
E. coli: selection of successful clones

- \(\text{bla}_{\text{CTX-M-15}} \) in a multi-R island in specific plasmids (IncFII) and ecovars (B2) of specific *E. coli* (O:25:H4ST131)

Boyd et al. AAC 2004; 48:3758-64; Coque et al. EID 2008; 14:195-200
Nicolas-Chanoine et al. JAC 2008; 61:273-281
Emergence and dissemination of resistant bacteria

Fixation of resistant genes and resistant bacteria in bacterial populations

Mutation → Selection → Spread → Well-adapted clones

A = antibiotic pressure

Lateral transfer

Epidemic & endemic

A = by author

ESCMID Online Lecture Library

© by author
Multi-drug-resistant organisms

(a) Sequential acquisition of resistance genes

(b) Co-selection process

susceptible isolate
resistance genes
isolate with co-resistance
antimicrobials

Canton & Ruiz-Garbajosa Curr Opin Pharmacol 2011; 11:477-85
- **4 plasmids with several resistance genes**

 - **p271A (35 kb, IncN):** \(b_{\text{NDM-1}} \)
 - **p271B (110 kb, IncF):** \(b_{\text{TEM-1}}, b_{\text{OXA-9}}, b_{\text{CTX-M-1}}, \) armA, aadA1, mph2, mel, dfrA12, arr2, cmlA5, sul1, qacE\(\Delta1 \)
 - **p271C (130 kb, Inc):** \(b_{\text{OXA-1}}, b_{\text{OXA-10}}, r_{\text{MTB}}, a_{\text{PhA1-LAB}}, \) ermB, catB4, sul1, qepA, qacE\(\Delta1 \)
 - **p271C (160 kb):** aadA6, aacC2, dfrA1, sul1, qacE\(\Delta1 \) merRTPADE

- **Chromosomal R-genes:** \(a_{\text{mpC}}, o_{\text{mpC}}, o_{\text{mpF}}, g_{\text{yrA}}, p_{\text{arC}} \)
Escherichia coli

- Which is the resistance pattern?
 - different location, gender, …

- Which are the important well establish resistance and emerging resistance mechanisms?
Escherichia coli: resistance pattern

143,583 routine clinical isolates
Comunitat Valenciana, Spain (2007-09)

Escherichia coli

Resistance according to anatomic location

X, men; O, women;
ABS, abscesses; DIS, digestive system; URI, urine; GUS, genitourinary system; MED, medical devices; BDT, bones and deep tissues; RES, respiratory system; BLO, blood; SST, skin and soft tissues.

Escherichia coli

Resistance according to gender and age

Graph showing the percentage of ciprofloxacin resistance by age and gender.
Escherichia coli: resistance pattern

143,583 routine clinical isolates
Comunitat Valenciana, Spain (2007-09)

E. coli: amoxicillin-clavulanate resistance

- Hyperproduction of penicillinases (TEM-1, TEM-2, SHV-1)
 - Presence of strong promoters, small multi-copy plasmids
- OXA enzymes (poorly inhibited by β-lactamase inhibitors)
- IRT-(inhibitor-resistant TEM) and CMT-(complex-mutant TEM)
 - type β-lactamases
- Plasmid mediated AmpC enzymes
- Plasmid mediated carbapenemases
- Overproduction of constitutive AmpC cephalosporinase
- Permeability deficiency (OmpF and/or OmC)

Evolution of amoxicillin-clavulanic resistance blood isolates (Spain, EARSS-net, 2003-06) and antibiotic consumption

Amoxicillin-clavulanate resistant *E. coli*

257 isolates with amox/clav MIC ≥ 32/16 mg/l from clinical samples recovered in 7 hospitals in Spain (Jan-May 2010) with 9.3% of resistance

- **OXA-1-** and **IRT-producing isolates mainly recovered from UTIs**
- **OXA-1 producers and c-AmpC-high mainly recovered from blood**
- **No especific risk factors**

Rodríguez-Baño et al. J Clin Microbiol 2013; 51:2414-7

14.4% co-produced an ESBL most of them CTX-M-15
Escherichia coli: resistance pattern

143,583 routine clinical isolates
Comunitat Valenciana, Spain (2007-09)

ESBL producing *Escherichia coli* isolates

3rd gen. cephalosporin resistance (invasive isolates, 2003 vs. 2012)

ESBL producing *Escherichia coli* isolates

SMART study (intraabdominal infections)

Hawser et al., AAC, 2011;55:3917-3921; Hoban et al., AAC, 2010;54:3043-3046; Unpublished: SMART Study
ESBL producing *Escherichia coli* isolates

SMART study (intraabdominal infections)

Hawser et al., AAC, 2011;55:3917-3921;
Hoban et al., AAC, 2010;54:3043-3046; Unpublished: SMART Study
ESBL producing *Escherichia coli* isolates

SMART study (intraabdominal infections)

S. Hawser (unpublished, SMART Study)
CTX-M-Enterobacteriaceae: Global distribution

Hawkey and Jones. J Antimicrob Chemother 2009; 64 (Suppl. 1): i3-i10
Co-resistance in ESBL and non-ESBL producing *E. coli* isolates
ESBL – Enterobacteriaceae
Ramón y Cajal University Hospital (1988-2005)

320 patients in 2005!
65% outpatients mainly with UTI

Cantón & Coque. Curr Opin Microbiol 2006; 9:466-75
Fecal carriage of ESBL-Enterobacteriaceae

ESBLs, increasing the complexity

- Changing epidemiology of ESBLs (fecal carriers, Madrid, Spain)

Paniagua, Valverde et al. (submitted)
ESBL-Enterobacteriaceae fecal carriage

- WHO area
 - Africa
 - America
 - Eastern Mediterranean
 - Europe
 - South East Asia
 - Western Pacific

- Study size
 - 1,000
 - 500
 - 100

- Year: 2001 to 2011

Escherichia coli: resistance pattern

143,583 routine clinical isolates
Comunitat Valenciana, Spain (2007-09)

Current epidemiology of carbapenemases

- Increased prevalence all over the world:
 - efficient penetration with outburst of specific carbapenemases

- Mainly in Enterobacteriaceae (K. pneumoniae, Enterobacter spp., and E. coli) but also in P. aeruginosa and Acinetobacter baumanii

- Different epidemiology of different carbapenemases in distinct geographic areas
 - KPC mainly in EEUU
 - VIM, KPC and OXA-48 in Europe
 - NDM in India, Pakistan, ...

- Different population structure
 - dissemination of high-risk clones at initial
 - polyclonal situation

Nordmann et al. Emerging Infect Dis 2011; 17:1791- 8
Cantón et al. Clin Microbiol Infect 2012; 18:413-31
Carbapenemase producing Enterobacteriaceae

Carbapenem resistance (invasive isolates, 2012)

Escherichia coli
Klebsiella pneumoniae

Emergence and dispersion of carbapenemases in *E. coli*

Monthly new patients infected/colonized with **KPC-producing-Enterobacteriaceae**. Ramón y Cajal University Hosp. (Sep-2009-Jan-2012)

Ruiz-Garbajosa et al. JAC; 2013, Jun-20
Fecal Carriage of Carbapenemase-Producing *Enterobacteriaceae*: a Hidden Reservoir in Hospitalized and Nonhospitalized Patients

Desirée Gijón, Tânia Curiao, Fernando Baquero, Teresa M. Coque, and Rafael Canton

<table>
<thead>
<tr>
<th>Species (no. of isolates)</th>
<th>PFGE type</th>
<th>Strain identification</th>
<th>MLST</th>
<th>Patient</th>
<th>Ward(s) and/or patient status</th>
<th>Month and year of isolation</th>
<th>Plasmid size(s) (kb)<sup>b</sup></th>
<th>Inc group</th>
<th>Integron type</th>
<th>Coresistance(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klebsiella pneumoniae (8)</td>
<td>KPMBL-A</td>
<td>RYC034268</td>
<td>ST39</td>
<td>A</td>
<td>Oncology<sup>c</sup></td>
<td>Mar-06</td>
<td>50, 100, 250</td>
<td>N</td>
<td>B</td>
<td>Gm, Tb, Ak, Na, Fos, SXT</td>
</tr>
<tr>
<td></td>
<td>KPMBL-B</td>
<td>RYC042800</td>
<td>ST39</td>
<td>B</td>
<td>General surgery<sup>d</sup></td>
<td>Mar-06</td>
<td>30, 100, 250</td>
<td>N</td>
<td>B</td>
<td>Gm, Tb, Ak, Na, Cip, Fos, SXT</td>
</tr>
<tr>
<td></td>
<td>KPMBL-C</td>
<td>RYC165502</td>
<td>ST668</td>
<td>C</td>
<td>Internal Medicine</td>
<td>Nov-09</td>
<td>50</td>
<td>N</td>
<td>B</td>
<td>SXT, Fos</td>
</tr>
<tr>
<td></td>
<td>KPMBL-D</td>
<td>RYC116749.1</td>
<td>ST253</td>
<td>D</td>
<td>Neurology</td>
<td>Aug-09</td>
<td>300</td>
<td>H12</td>
<td>A</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>KPMBL-D</td>
<td>RYC179897</td>
<td>ST163</td>
<td>E</td>
<td>Internal</td>
<td>Jan-10</td>
<td>50</td>
<td>N</td>
<td>B</td>
<td>Na, SXT</td>
</tr>
<tr>
<td></td>
<td>KPMBL-D</td>
<td>RYC197365.2</td>
<td>ST163</td>
<td>F</td>
<td>Outpatient<sup>f</sup></td>
<td>Jan-10</td>
<td>50</td>
<td>N</td>
<td>B</td>
<td>SXT, Fos</td>
</tr>
<tr>
<td></td>
<td>KPMBL-D</td>
<td>RYC197365.3</td>
<td>ST163</td>
<td>F</td>
<td>Outpatient<sup>f</sup></td>
<td>Jan-10</td>
<td>50</td>
<td>N</td>
<td>B</td>
<td>SXT</td>
</tr>
<tr>
<td></td>
<td>KPMBL-D</td>
<td>RYC198749</td>
<td>ST163</td>
<td>G</td>
<td>Outpatient</td>
<td>Jan-10</td>
<td>50</td>
<td>N</td>
<td>B</td>
<td>Na, SXT</td>
</tr>
<tr>
<td>Enterobacter cloacae (3)</td>
<td>ECMBL-A</td>
<td>RYC023986</td>
<td>H</td>
<td>Medical ICU</td>
<td>Feb-06</td>
<td>100, 300</td>
<td>H12</td>
<td>A</td>
<td>Na, Cip, Fos, SXT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECMBL-B</td>
<td>RYC035509</td>
<td>I</td>
<td>Cardiovascular ICU</td>
<td>Mar-06</td>
<td>100, 300</td>
<td>H12</td>
<td>A</td>
<td>Na, Fos, SXT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECMBL-B</td>
<td>RYC116749.2</td>
<td>D</td>
<td>Neurology</td>
<td>Aug-09</td>
<td>50, 320</td>
<td>N</td>
<td>B</td>
<td>SXT</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli (2)</td>
<td>ECMBL-A</td>
<td>RYC115509</td>
<td>ST2441</td>
<td>J</td>
<td>Outpatient</td>
<td>Aug-09</td>
<td>50</td>
<td>N</td>
<td>B</td>
<td>Tb, SXT</td>
</tr>
<tr>
<td></td>
<td>ECMBL-B</td>
<td>RYC165481</td>
<td>ST155</td>
<td>K</td>
<td>Nephrology</td>
<td>Nov-09</td>
<td>50</td>
<td>N</td>
<td>B</td>
<td>Tb, Na, Cip, SXT</td>
</tr>
<tr>
<td>Citrobacter freundii (1)</td>
<td>CFMBL-A</td>
<td>RYC197365.1</td>
<td>F</td>
<td>Outpatient<sup>f</sup></td>
<td>Jan-10</td>
<td>50</td>
<td>N</td>
<td>B</td>
<td>Na, SXT</td>
<td></td>
</tr>
</tbody>
</table>
Carbapenemase producing Enterobacteriaceae in Europe

OXA-48

- First identified in *K. pneumoniae* in Istanbul (Turkey) in 2003
- Extensively reported as a source of *K. pneumoniae* nosocomial outbreaks
- Well disseminated in the Mediterranean area and in western EU countries (cross-border dissemination)

Nordmann et al. Emerging Infect Dis 2011; 17:1791-8
Cantón et al. Clin Microbiol Infect 2012; 18:413-31

- Clonal and polyclonal spread
- Difficult detection unless in isolates:
 - coproducing an ESBL
 - with porin deficiency

Increasing description of OXA-48 in *E. coli*
Population structure of OXA-48 - Enterobacteriaceae

Escherichia coli

<table>
<thead>
<tr>
<th>Country</th>
<th>ST</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>S38</td>
<td>Poirel et al. AAC 2011; 55:4937-8</td>
</tr>
<tr>
<td>Italy</td>
<td>2076</td>
<td>Giani et al. AAC 2012; 56:2211-3</td>
</tr>
<tr>
<td>UK</td>
<td>10, 38, 131, 88, 155, 167, 648,</td>
<td>Dimou et al. JAC 2012; April 24</td>
</tr>
<tr>
<td>Ireland</td>
<td>131</td>
<td>Morris et al. AAC 2012; May 7</td>
</tr>
<tr>
<td>Belgium</td>
<td>23, 648, 1722</td>
<td>Glupczynski et al. IJAA 2012; 39:168-72</td>
</tr>
<tr>
<td>Israel</td>
<td>2</td>
<td>Goren et al. JAC 2011; 66:672-3</td>
</tr>
<tr>
<td>Sultanate of Oman</td>
<td>138, 648</td>
<td>Dortet et al. CMI 2012; 18:E144-8</td>
</tr>
</tbody>
</table>
Escherichia coli: resistance pattern

143,583 routine clinical isolates
Comunitat Valenciana, Spain (2007-09)

Absence of cross resistance with other antimicrobials

Different resistance mechanisms
- Reduction of transport systems
 - Different mutations *in vivo* and *in vitro*
 - *ptsI* and *uhpA* mutants (regulation of GlpT and UhpT transporter)
- Target modification (MurA)
- Enzymatic inactivation
 - *fosA* (glutathione-S transferase) associated to plasmids
 - *fosB* (L-cysteine-thiol transferase) Gram-negatives
 - *fosX* (epoxide hydrolase): chromosomic (*L. monocytogenes*)
- FormA, FormB, FosC (quinases in fosfomycin producers)

Escherichia coli and fosfomycin

- Increased fosfomycin resistance in ESBL producers associated with increased use of this antimicrobial in the community

<table>
<thead>
<tr>
<th>Year</th>
<th>Fosfomycin resistance</th>
<th>ESBL production</th>
<th>Fosfomycin resistance in ESBL producers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>4.0%</td>
<td>6.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td>2006</td>
<td>4.5%</td>
<td>6.5%</td>
<td>10.5%</td>
</tr>
<tr>
<td>2007</td>
<td>5.0%</td>
<td>7.0%</td>
<td>11.0%</td>
</tr>
<tr>
<td>2008</td>
<td>5.5%</td>
<td>7.5%</td>
<td>11.5%</td>
</tr>
<tr>
<td>2009</td>
<td>6.0%</td>
<td>8.0%</td>
<td>12.0%</td>
</tr>
</tbody>
</table>

Fosfomycin-R: 9.1%
- SHV-12: 5.1%
- CTX-M-14: 5.6%
- CTX-M-15: 15.3%
Escherichia coli: world wide resistance

- Increasing prevalence of resistant isolates
 - Well establish and emerging resistance mechanisms

- Different values according to surveillance studies

- Dispersion of multi-drug-resistant mechanisms ...
 - efficiently spread: clonal spread and polyclonal spread

- Sensor of resistance mechanism (central role in the acquisition and dissemination of resistance mechanisms)
World wide resistance and multiresistance in *Escherichia coli*