

INTRODUCTION

Plazomicin is an aminoglycoside that was engineered to overcome aminoglycoside-modifying enzymes, the most common aminoglycoside-resistance mechanism in Enterobacteriaceae. Dose selection support for the plazomicin dosing regimen evaluated in the completed Phase 3 studies was based on a series of pharmacometric analyses undertaken early in drug development [1, 2]. Refinement of a population pharmacokinetic (PK) model based on PK data from Phase 3 patients [3] allowed for the reassessment of initial plazomicin dosing regimen administered according to baseline creatinine clearance.

As described herein, pharmacokinetic-pharmacodynamic (PK-PD) target attainment analyses were undertaken to evaluate initial plazomicin dosing regimens and interpretive criteria for the in vitro susceptibility testing for plazomicin against Enterobacteriaceae.

METHODS

Simulated Patient Populations

- Using parameter estimates from the previously developed population PK model, a compartment model with zero-order input and 1st-order elimination [3], disease indicator parameters, and demographic variables, total-dose plasma concentration-time profiles were generated for three sets of simulated patients:
 1. Simulated patients with complicated urinary tract infections (cUTI), including acute pyelonephritis (AP), and creatinine clearance (CLcr; mL/min) generated using two sets of ranges: >0 to <20, >20 to ≤50, >50, >30 to ≤40, >40 to ≤60, >60, >30 to ≤30 mL/min; and >60 mL/min.
 2. Simulated patients with cUTI or AP, bloodstream infection (BSI), or hospital-acquired bacterial pneumonia (HABP)/ventilator-associated bacterial pneumonia (VABP).
 3. Initial plazomicin dosing regimens were administered to simulated patients according to CLcr as described in Table 1.

RESULTS

As shown in Figure 1, the scatterplot of average total-dose plasma AUC(MIC) values on Days 1-2 among simulated patients by baseline CLcr

As shown in Figures 2 and 3, percent probabilities of attaining the total-dose plasma AUC(MIC) ratio target associated with net bacterial stasis at MIC values of 2 or 4 µg/mL approached or exceeded 90% among simulated patients with cUTI/AP, BSI, or HABP/VABP (C) based on total-dose plasma or ELF AUC(MIC) ratio targets for net bacterial stasis (A) and MIC-targeted (B) among simulated patients by CLcr group.

CONCLUSIONS

These data provide support for proposed plazomicin dosing regimens and the evaluation of plazomicin in susceptibility breakpoints against Enterobacteriaceae.

REFERENCES

ACKNOWLEDGMENTS

This project has been funded in whole or in part with federal funds from the Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services, under Contract No. HHSN100201000046C.