EVALUATION OF PAEDIATRIC BETA-LACTAM PRESCRIBING IN HOSPITALS

R. Bruyndonckx^{1,2}, N. Hens^{1,3}, M. Aerts¹, A. Versporten², H. Goossens², J. Bielicki⁴, C. Barker⁴ and M. Sharland⁴

- 1. Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BIOSTAT), Hasselt University, Belgium
- 2. Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Belgium
- 3. Centre for Health Economic Research and Modelling of Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Belgium
- 4. Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St. George's University of London, United Kingdom

Introduction

- Beta-lactam antibiotics: most frequently prescribed class of antibiotics
- Includes penicillins, cephalosporins, monobactams and carbapenems \rightarrow similar pharmacological profile
 - \rightarrow similar reasons for deviating from recommended dose
- Studied in a point prevalence survey (PPS) within the Antibiotic Resistance and Prescribing in European Children (ARPEC) project

12 beta-lactar

- prescribed to 4
- within 1191 de
- within 219 hos
- within 41 coun
- within 9 UN ge

Methods

Single analysis

Hierarchical data

 \rightarrow Linear multi-level model

Construction of final model:

- \rightarrow Backwards selection main effects
- \rightarrow Inclusion of interactions
- \rightarrow Backwards selection interactions

Meta-analysis

Construction of final meta-model:

- \rightarrow Pool antibiotic-specific models
- \rightarrow Include fixed effect for antibiotic type and interactions with all included variables
- \rightarrow Backwards selection

Results Single Analysis (ceftriaxone):

Figure 1. Scatter plot of total dose versus weight.

→ Mixed dosing: 50% weight-based + 50% irrespective of weight

Table 1. Age percentiles for frequently occurring doses.

Deee	Percentiles for age (years)			
Dose	25 th	50 th	75 th	
500mg	0.42	0.83	1.75	
1000mg	1.75	3	7	
1500mg	3	5	7	
2000mg	6	9	13	

→ Prescribing irrespective of weight = according to vial size

Laboratory of Medical Microbiology Vaccine & Infectious Disease Institute University of Antwerp

PPS data

n antibiotics	Information on:
4778 children	antibiotic type, hospital type, department type,
epartments	treatment type, antibiotic prevalence, gender,
spital	indication for treatment, reason for treatment,
ntries	presence of underlying diagnoses, weight,
eographical regions	ventilation status

Meta-analysis:

→ Antibiotic-specific effect for most variables

→ General effect for hospital type and treatment type

Table 2. Parameter estimates and standard errors for the effect of hospital and treatment type

Category	Estimate	Standard error
Primary or secondary versus tertiary or specialized hospital	-4.5839	2.2811
Targeted versus empiric treatment	5.2327	1.6073

$R^2 = 0.8326$

→ Good fit: about 83% of the variability in the data is explained by the final meta-model

Conclusion:

- Antibiotics are often prescribed irrespective of weight
- Reasons for deviating from recommended dose are antibiotic-specific rather than general