V-akt murine thymoma viral oncogene homolog 3 (AKT3) influences outcome of pneumococcal meningitis

Mercedes Valls Seron*, Bart Ferwerda, Valery Jaspers, Arie van der Ende, Matthijs Brouwer, Diederik van de Beek

1Academic Medical Center Amsterdam, Center of Infection and Immunity Amsterdam (Cinima), Department of Neurology, Amsterdam, Netherlands
2Academic Medical Center Amsterdam, Department of Neurology, Center of Infection and Immunity Amsterdam (Cinima), Amsterdam, Netherlands
3Academic Medical Center Amsterdam, Amsterdam, Netherlands
4Academic Medical Center and the Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, the Netherlands, Center of Infection and Immunity Amsterdam (Cinima), Amsterdam, Netherlands
5Academic Medical Centre Amsterdam, Department of Neurology, Center of Infection and Immunity Amsterdam (Cinima), Department of Neurology, Amsterdam, Netherlands

Background: Bacterial meningitis is a severe and deadly disease, most commonly caused by Streptococcus pneumoniae. Genetic association studies in pneumococcal meningitis may provide new insights in genetic risk factors for an unfavourable outcome.

Material/methods: We performed a prospective nationwide genetic association study and genotyped pneumococcal meningitis patients using a genome wide exome variants chip (Illumina Exome array v1.1). We also tested which variations were associated with unfavourable outcome. We assessed the gene expression of the top three most significant hits found in pneumococcal meningitis patients and healthy volunteers. We studied the expression of two of the hits and the function of one of the identified genes in a pneumococcal meningitis mouse model using knockout mice. Finally, we studied if patients with the deleterious variant in the identified gene had specific clinical characteristics compared to those with the non-deleterious variant.

Results: We found that single-nucleotide polymorphisms in DCTN4 (encoding dynactin 4, rs6869603), RAET1E (Retinoic Acid Early Transcript 1E, rs3798763) and AKT3 (V-Akt Murine Thymoma Viral Oncogene Homolog 3, rs10157763) were associated with poor disease outcome (p=2.414e-05, p=9.346e-05, p=9.95e-05). DCTN4 transcript levels were four-fold higher (p=1.19e-06) in healthy
volunteers than in meningitis patients while those of AKT3 were eleven-fold lower (p=2.1e-3). Transcript levels of RAET1E were comparable (p=0.194) between the two groups. In the murine model, consistent with the human data, akt3 mRNA levels decreased two-fold at 30 h after infection (p=0.01). In contrast, dctn4 transcript levels were not influenced by pneumococcal infection. A kt3 KO mice had increased disease severity reflected by higher mortality (p=0.036), higher clinical scores (p=0.021), increased brain TNF-α (p=0.06) as compared to wild-type mice. Patients with the risk genotype (AA) for rs10157763 had an increased risk of seizures on admission (Odds ratio 2.94, 95% confidence interval 1.11-7.80), had a lower score on the Glasgow Coma Scale (median 9 vs 10, p=0.009), less frequently exhibited fever (OR 0.43, 95% CI 0.21-0.84 and they more often develop focal neurologic deficits during admission (OR 2.27, 95% CI 1.12-4.61).

Conclusions: We identified a genetic variant in AKT3 associated with poor outcome in patients with pneumococcal meningitis. The AKT3 polymorphism influenced the rate of seizures and focal neurologic deficits, indicating it influences the disease process in the brain.