Short summary of project outcome (max. 100 words)

We investigated the impact of bacterial lipoproteins acylation on inflammation and brain injury during experimental GBS meningitis in infant rats. NEM316 and COH1 and their mutants defective in prolipoprotein diacylglyceryl transferase were used either live or ethanol. Cerebrospinal fluid samples were analysed for inflammatory mediators and the cortex and the hippocampus for brain damage.

Results: Differences in inflammatory processes could be observed between strains when used after ethanol fixation. However, they did not translate into significant changes in the pathophysiology of meningitis by live GBS.

Conclusion: This argues for LBPs acylation being dispensable for immune recognition during GBS meningitis.

Published articles originating from your Research Grant project

- **Bacterial lipoprotein acylation is dispensable for the pathophysiology of experimental group B streptococcal meningitis.** Grandgirard et al. Manuscript in preparation

Articles in preparation from your Research Grant project

- **Bacterial lipoprotein acylation is dispensable for the pathophysiology of experimental group B streptococcal meningitis.** Grandgirard et al. ECCMID 2011, Milan, Poster No. P1758