EUROPEAN PROSPECTIVE STUDY OF CLOSTRIDIUM DIFFICILE STRAINS: PHENOTYPIC AND GENOTYPIC CHARACTERIZATION OF THE ISOLATES FROM DIFFERENT CLINICAL STATUS: INTERIM RESULTS

for the European Study Group on Clostridium difficile (ESGCD)

16th ECCMID, Nice, France, 2-4 April 2006
Main objectives:

- To establish a well defined European collection of *C. difficile* strains
- To study and to compare the phenotypic and genotypic markers of isolates (*prevalence of toxinotype III ?*)
- To get an estimation of the incidence of *C. difficile* infections

Other objectives:

- To correlate clinical presentations with phenotypic and genotypic features *C. difficile*.
- To get the baseline characteristics of *C. difficile* strains isolated in 2005 making further investigations possible to follow trends in antimicrobial susceptibility, serogroups, genotypic patterns...
MATERIALS AND METHODS

• Design
 – Prospective European-wide study on C. difficile strains isolated during a 2-month period with phenotypic and genotypic characterization of isolates

• Requirements for participating hospitals:
 ▪ to have an on-site laboratory of microbiology
 ▪ to systematically perform culture each time a test for C. difficile is requested.
 ▪ to be able to detect toxins A or B from stools or from strains
 ▪ to fill out a questionnaire (=data form) for each isolated CD strain (whatever the toxin result is)
GENERAL ORGANIZATION OF THE STUDY

COUNTRY 1

- Hosp. 1
- Hosp. 2
- Hosp. 3

Local coordinator
- check the data and the corresponding strains

Main Coordinator (FB)
- enters data
- duplicates strain collection

Data forms + strains

Strain characterization (reference labs)

ESGCD executive committee

Analysis of data

Global and national results

Global results Data base from country 1

- Toxins A and B (Pr M. Delmée)
- Binary toxin (Dr F. Barbut)
- Antimicrobial susceptibility (Dr P. Mastrantonio)
- Epidemiological markers: Toxinotyping, PCR ribotyping (Dr Barbut)
MATERIALS AND METHODS

• Inclusion criteria:
 All the *C. difficile* strains (including the non toxigenic strains) isolated from inpatients (with community or nosocomial diarrhea)

• Exclusion criteria:
 Strains from outpatients or day-care patients.
 Strains from children under 2 years old

• Length of the study:
 a 2 month-period (or 1 month for every hospital which reaches 30 *C. difficile* strains at the end of the first month) between April and June.
• Clinical data form:
 • Clinical symptoms
 • Biological parameters
 • Risk factors (antimicrobial treatment, gastrointestinal procedures, previous hospitalization ……)
 • Endoscopic or radiologic examinations
 • Treatment and outcome
MATERIALS AND METHODS

- Phenotypic detection of toxins A and B
 (Pr M. Delmée, J. Van Broeck)
 - **Toxin A:**
 - *C. difficile* toxin A (Oxoid, UK)
 - suspension of 10 colonies in PBS
 - **Toxin B**
 - Cytotoxicity assay (Vero cells)
 - Supernatant of a BHI broth incubated 4 days
• Detection of binary toxin by PCR (Dr Barbut, L. Bonné, B. Burghoffer)
 • DNA extracted with Instagene*
 • Primers (Stubbs et al., FEMS Microbiol. Lett 2000, 186, 306-607)
 - CdtA pos 5'-TGAACCTGGAAAAAGGTGATG-3' 0.353 kb
 - CdtA rev 5'-AGGATTATTTACTGGACCATT TG-3'
 - CdtB rev 5'-ACCGGATCTCTTGCTTCAGTC-3'
 - CdtB pos 5'-CTTATTGCAAGTAAATACTGAG-3' 0.490 kb
 • CD 196 was used as positive control for detection of cdtA and cdtB.
MATERIALS AND METHODS

• **Toxinotyping (Dr Barbut, L. Bonné, B. Burghoffer)**
 - PCR-RFLP based method for analysing the polymorphism of the Paloc region compared to VPI 10463 as referred toxinotype 0
 - Amplification of A3 (A3C-A4N) and B1(B1C- B2N) fragments restricted by EcoR1 (A3) and Acc1 and Hinc2 (B1)
 - Toxinotyping scheme: http://mf.uni-mb.si/mikro/tox/

• **PCR for tcdC (Van den Berg, 2005)**
 - tcdCfor : 5’ CATATCCTTCTTCTCCTCCTC-3’ 159 bp
 - tcdCrev : 5’ AATTGTCTGATGCTGAACC-3’
MATERIALS AND METHODS

• **PCR ribotyping** (Dr Barbut, L. Bonné, B. Burghoffer)
 - Method described by Bidet et coll. (J CM 2000, 38, 2484-87)
 - Primers
 - CD1 : 5’-GTCCGGCTGGATCACCTCCT63’
 - CD2 : 5’- CCCTGCACCCTTAATAACTGGACC-3’
 - Electrophoresis through Resophor Agarose 3%

• **Antimicrobial susceptibility** (P. Mastrantonio, P.Spigaglia, F. Barbanti)
 - Etest method on Brucella blood agar supplemented with hemin and Vit K
 - Vancomycin (VA), Metronidazole (MZ), Erythromycin (EM), Clindamycin (CM), Moxifloxacin (MX), Tetracycline (TC)
 - Breakpoints used:
 - VA \geq 8 mg/l; MZ \geq 8 mg/l; MX \geq 4 mg/l
 - TC \geq 8 mg/l; EM \geq 4 mg/l; CM \geq 4 mg/l
Participating Countries

14 countries, 38 hospitals, 486 strains

<table>
<thead>
<tr>
<th>Country</th>
<th>Letter</th>
<th>No. Hospitals</th>
<th>Local Coordinator</th>
<th>No. Strains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>A</td>
<td>3</td>
<td>M. Delmée</td>
<td>73</td>
</tr>
<tr>
<td>France</td>
<td>B</td>
<td>3</td>
<td>F. Barbut</td>
<td>53</td>
</tr>
<tr>
<td>Germany</td>
<td>C</td>
<td>3</td>
<td>G. Ackermann</td>
<td>86</td>
</tr>
<tr>
<td>Hungary</td>
<td>E</td>
<td>4</td>
<td>E. Nagy</td>
<td>48</td>
</tr>
<tr>
<td>GB</td>
<td>R</td>
<td>1</td>
<td>I. Poxton</td>
<td>9</td>
</tr>
<tr>
<td>Italy</td>
<td>F</td>
<td>3</td>
<td>P. Mastrantonio</td>
<td>27</td>
</tr>
<tr>
<td>COUNTRY</td>
<td>Letter</td>
<td>No. Hospitals</td>
<td>Local coordinator</td>
<td>No. Strains</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Netherlands</td>
<td>G</td>
<td>3</td>
<td>E. Kuijper</td>
<td>29</td>
</tr>
<tr>
<td>Poland</td>
<td>H</td>
<td>3</td>
<td>H. Pituch</td>
<td>20</td>
</tr>
<tr>
<td>Spain</td>
<td>K</td>
<td>3</td>
<td>E. Bouza</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M. Somolinos</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>L</td>
<td>1</td>
<td>C. Balmelli</td>
<td>15</td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td>3</td>
<td>M. Wult</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Andersson</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>N</td>
<td>4</td>
<td>M. Yucesoy</td>
<td>9</td>
</tr>
<tr>
<td>Greece</td>
<td>P</td>
<td>3</td>
<td>H. Ladas</td>
<td>24</td>
</tr>
<tr>
<td>Ireland</td>
<td>D</td>
<td>1</td>
<td>D. Drudy</td>
<td>32</td>
</tr>
</tbody>
</table>
Distribution of participating hospitals
Strains and clinical data

- 486 strains and 464 clinical charts but an imperfect correspondance....
 - 30 clinical charts w/out strains
 - 43 strains w/out clinical charts
 - 435 complete files (strain + clinical charts)

- But
 - Some patients were children under 2 y.
 - Two countries sent a lot of repetitive isolates

- Therefore,
 - The data base needs to be cleaned
 - A last call for strains and clinical charts will be done
Brief overview on clinical data (n=464)

- **Age (excluding children <2)**:
 - 63+20 y. (68)
 - 57% of patients are older than 65 y.
- **Sex**:
 - male: 48.6%
 - female: 51.4%
- **Wards**:
 - Med: 72.9%
 - Surgical: 18.6%
 - ICU: 8.5%
 - Obstetrics: 0%
- **Previous ATB**: 76.4%
- **Endoscopy**: 11.9%
- **PMC**: 3.8%
Brief overview on clinical data

Incidence varies widely (23 hosp.):

\[2.45 \pm 1.8 \text{ CDAD/10,000 patient-days} \]
(range : 0.14- 7.1)

Hospitals N : 0.13-0.14 CDAD/10,000 patient-days
Hospital F: 0.5-1.2 «
Hospitals G, B: 2-7 «

USA : 12.1 CDAD /10,000 patients days (range 3-25.1)
(Sohn, ICHE 2005)
USA : 5 /10,000 patient-days
(Archibald, CDC, J ID 2004)
Québec : 12.8 /10,000 patients-days
(INSPQ report, 2005)
Toxigenicity

486 strains

414 toxigenic (85.2 %)

72 NON toxigenic (14.8 %)

Toxinotype 0308 (74.4%)

Toxinotype I-XXIV 106 (25.6%)

Geric B., J MM 2004: toxinotype = 12%
Distribution of toxin variant strains (n=106)

- III: 24%
- IV: 7%
- V, VII: 3%
- VIII: 31%
- others: 8%

USA (Geric, J MM 2004): III (17%), V (6%), VIII (12%)
<table>
<thead>
<tr>
<th>ATB</th>
<th>MIC50 (mg/l)</th>
<th>MIC90 (mg/l)</th>
<th>Range (min. max)</th>
<th>% R</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>0.5</td>
<td>0.75</td>
<td>0.25-2</td>
<td>0</td>
</tr>
<tr>
<td>MZ</td>
<td>0.06</td>
<td>0.125</td>
<td>0.012-0.75</td>
<td>0</td>
</tr>
<tr>
<td>EM</td>
<td>1</td>
<td>>256</td>
<td>0.047->256</td>
<td>46.7</td>
</tr>
<tr>
<td>CM</td>
<td>4</td>
<td>>256</td>
<td>0.016->256</td>
<td>50.0</td>
</tr>
<tr>
<td>TC</td>
<td>0.032</td>
<td>0.38</td>
<td>0.023->32</td>
<td>8.8</td>
</tr>
<tr>
<td>MX</td>
<td>0.5</td>
<td>>32</td>
<td>0.032->32</td>
<td>33.9</td>
</tr>
<tr>
<td>Country</td>
<td>No. strains</td>
<td>% R EM+CM+TC+MX</td>
<td>% S EM+CM+TC+MX</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>72</td>
<td>1.4</td>
<td>33.3</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>50</td>
<td>2</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>85</td>
<td>8.2</td>
<td>37.6</td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>31</td>
<td>9.7</td>
<td>32.3</td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>47</td>
<td>17</td>
<td>55.3</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>27</td>
<td>0</td>
<td>14.8</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>31</td>
<td>0</td>
<td>45.2</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>19</td>
<td>5.3</td>
<td>26.3</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>39</td>
<td>0</td>
<td>12.8</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>15</td>
<td>0</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>22</td>
<td>0</td>
<td>81.8</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>23</td>
<td>8.7</td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>9</td>
<td>11.1</td>
<td>77.8</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>8</td>
<td>0</td>
<td>12.5</td>
<td></td>
</tr>
</tbody>
</table>
Toxinotype III

- 25 strains isolated in 6 different countries
- 2 types of toxinotype III isolates by PCR-ribotyping:
 - «027» (n=20): AII13, AII6, AII9, AII12, AII25, AII27, AIII2, AIII3, AIII5, AIII8, AIII14, GII1, GII3, GII5, GII6, GII7, GII8, GII9, GII10, DII12
 - Non «027» (n=5): AII16, KIII3, BII1, MII27, MII23
- Epidemic «027» strains were clustered in 2 countries (Netherlands and Belgium) and isolated once in Ireland.
- Non «027» toxinotype III isolates were found once in France, Belgium, Spain and Sweden (2 strains),
PCR-ribotyping of toxinotype III isolates

Strains from Belgium

American Epidemic strain (1067)

French strain tox III

Belgian strain

American Epidemic strain (1067)
PCR-ribotyping of toxinotype III isolates

Strains from the Netherlands
PCR ribotyping of toxinotype III isolates

Epidemic clone « PCR ribotype 027 »

Non epidemic strains
Toxinotype III: antimicrobial susceptibility

- Epidemic «027» strains (n=20):
 - MIC EM > 256 mg/l
 - MIC MX ≥ 12 mg/l (except 1 strain with MIC = 6 mg/l)(AIII8)

- Non «027» toxinotype III strains (n=5):
 - MIC EM = 0.064->256 mg/l (1 strain R)
 - MIC MX < 2 mg/l

- Resistance to MX is not specific of the epidemic clone: 31% of strains different from toxinotype III are resistant to MX
TcdC polymorphism

<table>
<thead>
<tr>
<th>Ld. 10463 (0)</th>
<th>AI10 (VI)</th>
<th>BI3 (V)</th>
<th>BI12 (V)</th>
<th>8864 R9367</th>
</tr>
</thead>
</table>

159 bp (undeleted)

141 bp (-18 pb)

120 bp (-39 bp)
Toxinotype VIII

- 34 strains isolated in 6 countries
- All the strains were A-B+
- High prevalence in countries:
 - Poland (HII) : 80% (4/5)
 - Poland (HI) : 46.7 (5/11)
 - Ireland (DI) : 30.7% (4/13)
 - Sweden (MI) : 25% (3/12)
 - Germany (CIII) : 14.2% (7/49)
 - Ireland (DII) : 15.9% (3/19)
- PCR-ribotyping is under investigation
Toxinotype V

• This toxinotype is widely distributed (9 countries)
• It is more prevalent in some countries:
 – France: 17% (9/53) (in 3 hospitals)
 – Greece: 29% (7/24) (in 2 hospitals)
• Binary toxin was found in 72 strains (17.4% of toxigenic strains)
• Binary toxin was not detected in non toxigenic strains

Stubbs (Wales): 6.4%
Goncalves (France): 6%
Rupnik (Asia): 1.6%
Geric (USA): 6.1%
Conclusion

• So far, the epidemic strain toxinotype III, PCR-ribotype «027» has been isolated in 3 countries
• In 4 hospitals, this clone represents 30% to 70% of all the toxigenic isolates
• Resistance to MX is not a good screening method for detecting the epidemic clone
• There is a polymorphism among toxinotype III strains
• Correlation between toxinotypes and antimicrobial resistance patterns
• Analysis of clinical data: correlation between severity of disease and toxinotypes and/or binary toxin
• Correlation between previous antimicrobial treatment and antimicrobial susceptibility of isolates
• PCR ribotypes of toxinotype VIII and V
•
Acknowledgments to all participants involved in data and strain collection

- Belgium: C. Nonhoff, M. Delméé, V. Verhaegen
- France: JL Pons, F. Mory, V. Lalande
- Hungary: E. Nagy, E. Urban
- Italy: MG Menozzi, D’annibale, P. Nicoletti, G. Dei, P. Spigaglia, F. Barbanti
- Greece: H. Malamou-Lada, E. Papafrangas, M. Kanellopoulou, A. Avlani
- Switzerland: C. Balmelli
- Poland: G. Nutzynska, H. Pituch,
- Turkey: M. Yucesoy, M. Mamal Torun, S. Ercis, G. Soyletir, N. Ulger
- Germany: Dr Höhne, M. Kist, O. Hasselmayer,
- Sweden: M. Wullt
- Ireland: D. Drudy, N. Harnedy, S. Fitzgerald
- UK: I. Poxton, A.P. Gibb
Acknowledgments for financial supports

- **ESCMID**: «The society supports the activities of ESCMID study groups by providing competitive start up grants for selective scientific projects»
- Biocodex
- AB Biodisk
- Oxoid
- Genzyme