Characterization of *mcr*-5-harboring plasmids and mobile genetic elements in *Salmonella* using short-read and long-read sequencing technologies

12th International Meeting on Microbial Epidemiological Markers (IMMEM XII)

Maria Borowiak
Colistin and *mcr* mediated colistin resistance

colistin:
- cationic antimicrobial peptide
- interacts with lipid A in LPS → membrane disruption
- frequently used in animal production
- considered as critically important antibiotic in human medicine

mcr- mobile colistin resistance
- mediated by plasmid-encoded phosphoethanolamine transferases → addition of phosphoethanolamine to lipid A in the LPS layer results in reduced binding of colistin

Gao *et al.*, 2016 https://doi.org/10.1371/journal.ppat.1005957
Colistin and \textit{mcr} mediated colistin resistance

\textit{mcr-1}: the first described mobile colistin resistance gene

- discovered in \textit{E. coli} and \textit{K. pneumoniae} isolates from livestock, meat and patients in China
- transferable by horizontal gene transfer
- detected in more than ten Enterobacteriacea species
- globally distributed
- classified as major public health threat

Sun \textit{et al.}, 2018 https://doi.org/10.1016/j.tim.2018.02.006
Colistin and *mcr* mediated colistin resistance

First description of the respective *mcr* variants:

<table>
<thead>
<tr>
<th>mcr variant</th>
<th>reference</th>
<th>date of publication</th>
<th>country</th>
<th>organism</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>mcr-1.1</td>
<td>Liu et al.</td>
<td>26.11.2015</td>
<td>China</td>
<td>E. coli</td>
<td>pigs, retail meat (chicken and pork), patients</td>
</tr>
<tr>
<td>mcr-2.1</td>
<td>Xavier et al.</td>
<td>07.07.2016</td>
<td>Belgium</td>
<td>K. pneumoniae</td>
<td>calves and piglets</td>
</tr>
<tr>
<td>mcr-3.1</td>
<td>Yin et al.</td>
<td>27.07.2017</td>
<td>China</td>
<td>E. coli</td>
<td>pigs</td>
</tr>
<tr>
<td>mcr-4.1</td>
<td>Carattoli et al.</td>
<td>03.08.2017</td>
<td>Italy</td>
<td>S. Typhimurium</td>
<td>pigs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spain & Belgium</td>
<td>E. coli</td>
<td>piglets</td>
</tr>
<tr>
<td>mcr-5.1</td>
<td>Borowiak et al.</td>
<td>18.09.2017</td>
<td>Germany</td>
<td>S. Paratyphi B dTa+</td>
<td>poultry and chicken meat</td>
</tr>
<tr>
<td>mcr-6.1</td>
<td>AbuOun et al.</td>
<td>11.08.2017</td>
<td>UK</td>
<td>M. pluranimalium</td>
<td>pigs</td>
</tr>
<tr>
<td>mcr-7.1</td>
<td>Yang et al.</td>
<td>01.07.2018</td>
<td>China</td>
<td>K. pneumoniae</td>
<td>chicken</td>
</tr>
<tr>
<td>mcr-8.1</td>
<td>Wang et al.</td>
<td>04.07.2018</td>
<td>China</td>
<td>K. pneumoniae</td>
<td>pigs and chicken</td>
</tr>
<tr>
<td>mcr-9.1</td>
<td>Carroll et al.</td>
<td>07.05.2019</td>
<td>USA</td>
<td>S. Typhimurium</td>
<td>patient</td>
</tr>
</tbody>
</table>
Discovery of mcr-5 in *Salmonella* using WGS data

Study on 86 colistin resistant German *Salmonella* Paratyphi B dTa+ isolates (2011-2016)

- 12/32 mcr-1 negative isolates showed a unique resistance profile:
 - AMP, CIP, COL, NAL, SMX, STR, TET, TMP
 - one isolate (13-SA01718) was selected for sequencing

poultry
chicken meat
Discovery of *mcr-5* in *Salmonella* using WGS data

13-SA01718
sequencing raw reads

mapping against a
bacterial chromosome

collecting unmapped
reads

assembly

bacterial chromosome
of 08-00436

Contig 1

Contig 2

Contig 3

RastTK annotation

predicted phosphoethanolamine transferase = *mcr-5*
Discovery of *mcr-5* in *Salmonella* using WGS data

Study on 86 colistin resistant German *Salmonella* Paratyphi B *dTα*+ isolates (2011-2016)

- **32** negative for *mcr-1*
- **54** *mcr-1* positive

poultry

environment

chicken meat

mcr-5 PCR screening

14 isolates *mcr-5* positive isolates

MiSeq sequencing
Discovery of *mcr-5* in *Salmonella* using WGS data

- In *Salmonella* Paratyphi B *dTa+ mcr-5* is harbored by ColE-like plasmids and associated with a Tn3 family transposon (Tn6452)
- Tn6452 integration in the bacterial chromosome was observed
Characterization of further \textit{mcr-5} harboring \textit{Salmonella} \\

Screening on 360 additional colistin resistant \textit{Salmonella} isolates (2011-2018) \\

- 86 \textit{Salmonella} Paratyphi B \textit{dTa}+ \\
- 360 \textit{Salmonella} spp. \\

\textit{mcr-5} PCR screening \\

9 additional \textit{mcr-5} positive isolates: \\
5x \textit{Salmonella} Typhimurium \\
4x \textit{Salmonella} Typhimurium monophasic \\

\text{pig} \\
\text{pork} \\

\text{MiSeq & Minlon sequencing}
Characterization of further \textit{mcr-5} harboring \textit{Salmonella}

\textit{mcr-5} plasmid diversity in \textit{Salmonella} Typhimurium

Characterization of further mcr-5 harboring *Salmonella*

mcr-5 mobility associated with conjugative plasmids

- **pSE13-SA02717**
 - *Salmonella*
 - 50,928 bp IncX1

- **pSE13-SA01718-like**
 - *E. coli K12 J53*
 - 12,201 bp ColE

© ESCMID eLibrary by author
Characterization of further *mcr-5* harboring *Salmonella*

mcr-5 mobility associated with Tn6452 and putative mobile insertion cassettes

mcr-5 located on Tn6452

- pSE12-02284
- pSE13-SA01718-like
- pSE12-SA02717
- chromosome 12-02284
- chromosome 13-SA02717

mcr-5 located on a mobile insertion cassette*

- pEC0674-like
- pSE11-03671

© ESCMID eLibrary by author
Summary

• **23 mcr-5** positive *Salmonella* isolates were analyzed using WGS:

 - **5 different** *mcr-5* harboring **plasmids** were observed (1 conjugative and 1 comobilizable)

 - *mcr-5* was either located on a **transposon (Tn6452)** or a mobile insertion cassette

 - in three isolates **integration of Tn6452 in the bacterial chromosome** was observed
Global distribution of *mcr-5*

Organisms harboring *mcr-5*:

- *Salmonella enterica*
- *Escherichia coli*
- *Pseudomonas aeruginosa*
- *Aeromonas hydrophila*
- *Pigmentiphaga sp.*
- *Cupriavidus gilardii*

Countries reporting *mcr-5*:
Global distribution of *mcr*-5

Organisms harboring *mcr*-5:

- *Salmonella enterica*
- *Escherichia coli*
- *Pseudomonas aeruginosa*
- *Aeromonas hydrophila*
- *Pigmentiphaga sp.*
- *Cupriavidus gilardii*

Sources of isolates and samples tested positive for *mcr*-5:

- Pig
- Pork
- Poultry meat
- Ready-to-eat food
- Patients
- Hospital environment
- Hospital sewage
Acknowledgment

German Federal Institute for Risk Assessment

Unit 4SZ
PD Dr. Burkhard Malorny
Dr. Carlus Deneke
Dr. Simon Tausch
Dr. Josephine Grützke
Dr. Laura Uelze
Beatrice Baumann
Katharina Thomas

Unit 42:
Dr. Jennie Fischer
Dr. Istvan Szabo

Unit 43
Dr. Jens A. Hammerl

mcr-5 in *Salmonella Paratyphi B* dTa+:
This work is part of the ENGAGE project and co-funded by the German Federal Institute for Risk Assessment (BfR) and the European Food Safety Authority (EFSA).

Disclaimer: The conclusions, findings and opinions expressed in this presentation reflect only the view of the authors and not the official position of the European Food Safety Authority.
Thank you for your attention

German Federal Institute for Risk Assessment
Max-Dohrn-Str. 8-10 • 10589 Berlin, GERMANY
Phone +49 30 - 184 12 - 0 • Fax +49 30 - 184 12 – 99 0 99
bfr@bfr.bund.de • www.bfr.bund.de/en