Transmission of methicillin-resistant Staphylococcus aureus (MRSA) ST398 through the food chain in Portugal

Ons Bouchami1,2, H. De Lencastre2,3, Opeyemi Lawal1,2, Maria Joao Fraqueza4, Nuno Alexandre Faria1,2, Maria Miragaia1

1Instituto de Tecnologia Química e Biológica (ITQB-NOVA) António Xavier, Laboratory of Bacterial Evolution and Molecular Epidemiology, Oeiras, Portugal, 2Instituto de Tecnologia Química e Biológica (ITQB-NOVA) António Xavier, Laboratory of Molecular Genetics, Oeiras, Portugal, 3The Rockefeller University, Laboratory of Microbiology, New York, United States, 4CIISA, Faculdade de Medicina Veterinária, Lisbon, Portugal

Background: Livestock associated (LA) MRSA has rapidly emerged in food producing animals and belongs mainly to clonal complex 398. Pigs have been described as the main reservoir of ST398 MRSA. Until now, the molecular epidemiology of LA-MRSA and the transmission routes of MRSA ST398 along the food production chain are not well established in Portugal.

Materials/methods: In order to trace MRSA transmission through pig food production chain in slaughterhouses in Portugal, we studied 31 MRSA isolates collected from 75 samples in 2016 at a slaughterhouse in different days and different sites (live pigs, pork, equipment and workers). MRSA SRL354 isolated in 2016 from blood in a Portuguese hospital was used for comparative genome analysis. Antibiotic susceptibility testing was performed by disk diffusion and E-test. Biocide, toxin, virulence, antibiotic resistant genes and SCCmec typing were performed by PCR. All isolates were characterized by PFGE and spa typing and representative strains were analyzed by WGS (Illumina NextSeq). Relatedness of the isolates was assessed by SNP and cgMLST using CSI phylogeny and chewBBACA, respectively.

Results: We found a high prevalence of MRSA in live pigs (60%), followed by workers (40%), equipment (38%) and meat (23%). All MRSA showed multidrug resistance profiles with high rates of resistance to tetracycline, clindamycin (100% each), erythromycin (76%), chloramphenicol (65%) and gentamicin (61%). We detected a high frequency of biocide resistance genes: mepA (87%), sepA (71%), norA, lmrS (61% each) and qacAB (52%) and virulence genes: hlb, hlg, sel (65% each) and sep (55%). MRSA strains yielded identical PFGE profile and SNP analysis identified a high genetic relatedness between three strain-pairs from animal/worker (28 SNPs), meat/worker (55 SNPs) and equipment/meat (6 SNPs). The cgMLST analysis revealed that MRSA ST398 isolated from workers and pigs in the slaughterhouse were closely related (15 to 147 allelic differences) to MRSA SRL354 isolated in hospital, sharing the same spa type t011.
Conclusions: Our results suggest that ST398 MRSA is frequently transmitted from live pigs to the slaughterhouse environment. The possible relatedness with MRSA ST398 causing invasive disease in hospitals is worrisome, which emphasize the need for continuous surveillance in the slaughterhouses.