Faecal parasitology

Lisette van Lieshout
lvanlieshout@lumc.nl
Leiden Clinical Parasitology Group
Department of Parasitology

Many thanks to the organizers for the invitation

I declare having no conflicts of interest (*)

(*) Department provides the McAb to Rapid Medical Diagnostics for the *Schistosoma mansoni* urine POC-CCA cassette

(*) Member board Parasitology section SKML (Dutch Foundation for Quality Assessment in Medical Laboratories)

© Lisette van Lieshout
© ESCMID eLibrary by author
Stool parasite diagnosis

In industrialised settings:
• General trend of reduced prevalence
• Most common diagnosis - pathogens?
 • Giardia; (Enterobius)
 • Outbreaks; e.g. Cryptosporidium, Cyclospora
• How relevant?
 • Dientamoeba fragilis; Blastocystis hominis
 • See a.o.: review Wong et al., (2018); Coyle et al., (2012)
 • Case-control study Bruijnesteijn van Coppenraet et al. (2015)
• Efforts per detected pathogen?
Nucleic Acid Amplification Test (NAAT)

Most common for stool parasites: (multiplex/multi-parallel) real-time PCR (unpreserved faces)

Initiated by *E. histolytica*/*E. dispar* differentiation

Specificity: $\approx 100\%$

Target design, QC-steps in laboratory flow!!!!

Sensitivity: \approx to >>>microscopy

Quality of reference test??

Volume? Distribution of parasite in sample (helminths)?

In house tests: Cq (Ct/Cp) -value => indicates DNA load

Stool samples: negative days/weeks after therapy
Layout of presentation

Will NAAT(*) fully replace microscopy for faecal parasites?

1. Should we abandon microscopy as routine diagnostics?

2. What do we learn from multiplex real-time PCRs?

3. What are (or remain) the alternatives, besides NAAT?

4. Trends and challenges; implications for clinicians

(*) NAAT = Nucleic Acid Amplification Test / Most common in parasitology: (multiplex) real-time PCR
Microscopy for faecal parasites – still “the” standard

Van Leeuwenhoek, 1681

(+): very broad!!!!!!!!

(-): observer dependent

(-): not for high throughput

(-): not enough for E. histolytica

Picture of broad microscopy
Parasite-specific procedures – in routine settings

- Specific staining procedures
 - Coccidia, microsporidia, *D. fragilis*
- Lack of sensitivity
 - Concentration procedures
 - Helminths-specific techniques
 - Repeated sampling
Key studies – in routine use of PCR for stool parasites

<table>
<thead>
<tr>
<th>Source population</th>
<th>N</th>
<th>Study design</th>
<th>Microscopy expertise</th>
<th>PCR targets</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(4 months)</td>
<td></td>
<td>Cryptosporidium</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E. histolytica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4 months)</td>
<td></td>
<td>Cryptosporidium</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E. histolytica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D. fragilis</td>
<td></td>
</tr>
<tr>
<td>Travel Clinic</td>
<td>2591</td>
<td>Prospective survey</td>
<td>Excellent</td>
<td>G. lamblia</td>
<td>Ten Hove et al., (2009) Eur J Clin Microbiol Infect Dis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13 months)</td>
<td></td>
<td>Cryptosporidium</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E. histolytica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S. stercoralis</td>
<td></td>
</tr>
</tbody>
</table>
Outcome

Key studies – in routine use of PCR for stool parasites

<table>
<thead>
<tr>
<th></th>
<th>General practitioners N=722</th>
<th>General practitioners & Peripheral hospital N=397 (*)</th>
<th>Travel Clinic N=2591</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscopy</td>
<td>Microscopy</td>
<td>PCR</td>
<td>Microscopy</td>
</tr>
<tr>
<td>G. lamblia</td>
<td>5.7%</td>
<td>9.3%</td>
<td>7.3%</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>-</td>
<td>5.0%</td>
<td>0.5%</td>
</tr>
<tr>
<td>E. histolytica/E. dispar</td>
<td>0%</td>
<td>-</td>
<td>0.3%</td>
</tr>
<tr>
<td>E. histolytica</td>
<td>-</td>
<td>0%</td>
<td>-</td>
</tr>
<tr>
<td>S. stercoralis</td>
<td>0%</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>Additional helminths</td>
<td>0%</td>
<td>-</td>
<td>0.3%</td>
</tr>
<tr>
<td>Additional protozoa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-pathogenic protozoa</td>
<td>3.9%</td>
<td></td>
<td>32.5%</td>
</tr>
</tbody>
</table>

(*) D. fragilis data excluded; ¹ Triple Faeces Test - microscopy
Outcome

Key studies – in routine use of PCR for stool parasites

<table>
<thead>
<tr>
<th></th>
<th>General practitioners N=722</th>
<th>General practitioners & Peripheral hospital N=397 (*)</th>
<th>Travel Clinic N=2591</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Microscopy</td>
<td>PCR</td>
<td>Microscopy</td>
</tr>
<tr>
<td>G. lamblia</td>
<td>5.7%</td>
<td>9.3%</td>
<td>7.3%</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>-</td>
<td>5.0%</td>
<td>0.5%</td>
</tr>
<tr>
<td>E. histolytica/E. dispar</td>
<td>0%</td>
<td>-</td>
<td>0.3%</td>
</tr>
<tr>
<td>E. histolytica</td>
<td>-</td>
<td>0%</td>
<td>-</td>
</tr>
<tr>
<td>S. stercoralis</td>
<td>0%</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>Additional helminths</td>
<td>0%</td>
<td>0.3%</td>
<td></td>
</tr>
<tr>
<td>Additional protozoa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-pathogenic protozoa</td>
<td>3.9%</td>
<td>32.5%</td>
<td></td>
</tr>
</tbody>
</table>

(*) *D. fragilis* data excluded; ^1 Triple Faeces Test - microscopy

High sensitivity and specificity of PCR for diagnosis of *Giardia lamblia*

Higher DNA loads in microscopy positive cases

Rapid clearance of *Giardia* DNA following treatment

Outcome

Key studies – in routine use of PCR for stool parasites

<table>
<thead>
<tr>
<th></th>
<th>General practitioners N=722</th>
<th>General practitioners & Peripheral hospital N=397 (*)</th>
<th>Travel Clinic N=2591</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Microscopy</td>
<td>PCR</td>
<td>Microscopy¹</td>
</tr>
<tr>
<td>G. lamblia</td>
<td>5.7%</td>
<td>9.3%</td>
<td>7.3%</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>-</td>
<td>5.0%</td>
<td>0.5%</td>
</tr>
<tr>
<td>E. histolytica/E. dispar</td>
<td>0%</td>
<td>-</td>
<td>0.3%</td>
</tr>
<tr>
<td>E. histolytica</td>
<td>-</td>
<td>0%</td>
<td>-</td>
</tr>
<tr>
<td>S. stercoralis</td>
<td>0%</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>Additional helminths</td>
<td>0%</td>
<td>0.3%</td>
<td>-</td>
</tr>
<tr>
<td>Additional protozoa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-pathogenic protozoa</td>
<td>3.9%</td>
<td>32.5%</td>
<td></td>
</tr>
</tbody>
</table>

(*) *D. fragilis* data excluded; ¹ Triple Faeces Test - microscopy
Cryptosporidiosis
(Cryptosporidium hominis/C. parvum)

Coccidia; epithelial cells
Faecal-oral; food/water => outbreaks; seasonal
Children; self limiting (nitazoxanide); opportunistic

© Dept Parasitology - LUMC
Routine PCR multiplex including *Cryptosporidium*: earlier detection of outbreaks

Simultaneous increase of *Cryptosporidium* infections in the Netherlands, the United Kingdom and Germany in late summer season, 2012

N Fournet¹,²,³, M P Dege³,⁴,⁵, A T Urbanus¹, G Nichols⁴, B M Rosner⁴, P M Chalmers⁵, R Gorton⁵, K G Pollock⁵, J W B van der Giessen⁵, P C Wever⁶, J W Dorigo-Zetsma⁶, B Mulder⁷, T G Manka⁷, I Overdvest⁷, J G Kusters⁷, W van Peit⁷, L M Kortbeek (Titia.Kortbeek@rivm.nl)¹

MMWR / June 28, 2019 / Vol. 68 / No. 25

Morbidity and Mortality Weekly Report

Cryptosporidiosis Outbreaks — United States, 2009–2017

Radhika Gharpure, DVM¹,²; Ariana Perez, MPH¹,³; Allison D. Miller, MPH¹,⁴; Mary E. Wikswo, MPH⁵; Rachel Silver, MPH¹,³; Michele C. Hlavsa, MPH¹
<table>
<thead>
<tr>
<th></th>
<th>General practitioners N=722</th>
<th>General practitioners & Peripheral hospital N=397 (*)</th>
<th>Travel Clinic N=2591</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Microscopy</td>
<td>PCR</td>
<td>Microscopy</td>
</tr>
<tr>
<td>G. lamblia</td>
<td>5.7%</td>
<td>9.3%</td>
<td>7.3%</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>-</td>
<td>5.0%</td>
<td>0.5%</td>
</tr>
<tr>
<td>E. histolytica/E. dispar</td>
<td>0%</td>
<td>-</td>
<td>0.3%</td>
</tr>
<tr>
<td>E. histolytica</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>S. stercoralis</td>
<td>0%</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>Additional helminths</td>
<td>0%</td>
<td>0.3%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Additional protozoa</td>
<td></td>
<td></td>
<td>0.2%</td>
</tr>
<tr>
<td>Non-pathogenic protozoa</td>
<td>3.9%</td>
<td>32.5%</td>
<td>27.7%</td>
</tr>
</tbody>
</table>

(*) D. fragilis data excluded; ¹ Triple Faeces Test - microscopy
How essential to include *E. histolytica* target in routine multiplex PCR?

Why not only for those patients exposed to tropical region?

Illustrative case:

A&E: 56-year-old healthy Dutch male

Travels regularly to Berlin, no travel outside EU

10 days watery diarrhoea, bloody & mild fever & **extreme** rectal pain

- Bacteriology culture of blood, urine, stool: **no abnormalities**
- Virology & Bacteriology stool PCRs: **no abnormalities**
- Parasitology stool microscopy: **no abnormalities**
- Parasitology: routine PCR for *E. histolytica/ Giardia / Cryptosporidium*
 - *E.histolytica*: Ct= 25.2 - Serology confirmation
Outcome

Key studies – in routine use of PCR for stool parasites

<table>
<thead>
<tr>
<th></th>
<th>General practitioners N=722</th>
<th>General practitioners & Peripheral hospital N=397 (*)</th>
<th>Travel Clinic N=2591</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Microscopy</td>
<td>PCR</td>
<td>Microscopy</td>
</tr>
<tr>
<td>G. lamblia</td>
<td>5.7%</td>
<td>9.3%</td>
<td>7.3%</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>-</td>
<td>5.0%</td>
<td>0.5%</td>
</tr>
<tr>
<td>E. histolytica/E. dispar</td>
<td>0%</td>
<td>-</td>
<td>0.3%</td>
</tr>
<tr>
<td>E. histolytica</td>
<td>-</td>
<td>0%</td>
<td>-</td>
</tr>
<tr>
<td>S. stercoralis</td>
<td>0%</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>Additional helminths</td>
<td>0%</td>
<td>0.3%</td>
<td></td>
</tr>
<tr>
<td>Additional protozoa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-pathogenic protozoa</td>
<td>3.9%</td>
<td></td>
<td>32.5%</td>
</tr>
</tbody>
</table>

(*) D. fragilis data excluded; ¹ Triple Faeces Test - microscopy
Cyclosporiasis
Cyclospora cayetanensis

Coccidia; epithelial cells; travel and food related: (sub) tropics (Central America, Nepal, Indonesia)

Periods (intermittent) of:
- explosive watery diarrhoea
- vomiting
- severe weight loss
- (abdominal pain, myalgias, low-grade fever, and fatigue)

Self limiting in healthy cases (10-12 weeks); severe in immuno-compromised

Treatable with trimethoprim-sulfamethoxazole (Cotrim)
Increasing awareness of cyclosporidiasis

Repeated outbreaks US, Canada related to imported food

Outbreaks UK related to holidays in Mexico

Table 1 Selected commercialized nucleic acid amplification tests for enteric parasitic infections

<table>
<thead>
<tr>
<th>NAAT</th>
<th>Parasites detected</th>
<th>Separate DNA extraction step required?</th>
<th>Platform used</th>
<th>Specimens per run</th>
</tr>
</thead>
</table>
| xTAG GPP (Luminex, Austin, TX) | *Cryptosporidium* sp.
Giardia sp.
Entamoeba histolytica | Yes | Luminex only | 96 |
| RIDA®GENE Parasitic Stool Panel | *Cryptosporidium* sp.
Giardia sp.
Entamoeba histolytica
Dientamoeba fragilis | Yes | Several | Typically up to 96, depending on platform used |
| (R-Biopharm AG, Darmstadt, Germany) | | | | |
| FilmArray Gl | *Cryptosporidium* sp.
Giardia sp.
Entamoeba histolytica
Cyclospora cayetanensis | No | BioFire only | 1 |
| (BioFire Diagnostics, Salt Lake City, UT) | | | | |
| FTD Stool parasites | *Cryptosporidium* sp.
Giardia sp.
Entamoeba histolytica | Yes | Several | Typically up to 96, depending on platform used |
| (Fast-track Diagnostics, Sliema, Malta) | | | | |
| Gastroenteritis/parasite panel | *Cryptosporidium* sp.
Giardia sp.
Entamoeba histolytica | Yes | Several | Typically up to 96, depending on platform used |
| (Diagenode, Liege, Belgium) | | | | |

NAAT nucleic acid amplification tests
Which protozoa next to be included in PCR panels?

Microsporidia
Severe diarrhoea, mainly in immunocompromised (IC) patients
90% *Enterocytozoön bieneusi*
Encephalitozoön intestinalis; treatment by albendazole

LUMC: standard screening for IC patients;
2018 3% positive; (19/658 samples)

Cysto-isospora belli
Severe diarrhoea, mainly in immunocompromised (IC) patients
More related to HIV+, Africa
Outcome

Key studies – in routine use of PCR for stool parasites

<table>
<thead>
<tr>
<th></th>
<th>General practitioners N=722</th>
<th>General practitioners & Peripheral hospital</th>
<th>Travel Clinic N=2591</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Microscopy</td>
<td>PCR</td>
<td>Microscopy</td>
</tr>
<tr>
<td>G. lamblia</td>
<td>5.7%</td>
<td>9.3%</td>
<td>3.7%</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>-</td>
<td>5.0%</td>
<td>-</td>
</tr>
<tr>
<td>E. histolytica/E. dispar</td>
<td>0%</td>
<td>-</td>
<td>3.8%</td>
</tr>
<tr>
<td>E. histolytica</td>
<td>-</td>
<td>0%</td>
<td>-</td>
</tr>
<tr>
<td>S. stercoralis</td>
<td>0%</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>Additional helminths</td>
<td>0%</td>
<td>0.3%</td>
<td>-</td>
</tr>
<tr>
<td>Additional protozoa</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Non-pathogenic protozoa</td>
<td>3.9%</td>
<td>32.5%</td>
<td>-</td>
</tr>
</tbody>
</table>

(*) *D. fragilis* data excluded; ¹ Triple Faeces Test - microscopy
Essential helminths not to miss

Illustrative case (1):

Male, 61 year, born in Surinam, 30 years in NL

History of intestinal complaints, frequent nausea, lack of appetite, cough

• No eosinophilia (so lack of diagnostic trigger)
• Vasculitis, prednisone
• Situation deteriorates
• Stool samples microscopy negative => parasitology reference lab (LUMC)
Essential helminths not to miss

Stool PCR positive *Strongyloides stercoralis*
Microscopy finally confirmed
Stored serum (> 3 years): highly positive
Potentially life threatening; treatment: Ivermectin

Serology
Different formats; in-house, commercial
Sensitivity vs specificity

Combination PCR & serology: any tropical exposure
Essential helminths not to miss

Illustrative case (2):
Dutch male, 27 years, 4 months internship in Malawi
Including a weekend in CapeMcclear at month 2

Urticaria < 3 days; >3 weeks: fever, malaise, sweating, diarrhoea
At week 4: haematuria; praziquantel 40 mg/kgbw

In following 9 months:
Change in semen: lumpy texture, watery, yellow
• Visit to LUMC, because 3 weeks haematospermia, rusty
Essential helminths not to miss

Serology - *Schistosoma*

=> strongly positive

Active infection?

- Urine: microscopy negative
- Urine: PCR weakly positive (Ct 39.1)
- Semen: PCR strongly positive (Ct 25.1)
- Semen: sporadic eggs of *S. haematobium*

Symptoms disappear after retreatment with praziquantel

PCR semen and urine negative in follow-up
Male/Female Genital Schistosomiasis (MGS/FGS) PCR can facilitate the diagnosis

http://www.njmonline.nl/getpdf.php?id=565
What are the alternatives to NAAT?

Antibody detection (serology)
- Amoebiasis
- Strongyloidiasis
- Schistosomiasis

Antigen detection
- Protozoa coproantigen tests?
- *E. histolytica, Giardia, Cryptosporidium* => PCR
- Schistosoma (blood, urine)
 - POC-CCA urine test strip for *S. mansoni*
 - Ultra-sensitive CAA test still experimental

Non-microscopy
Post-travel screening on parasitic infections?

Routine PCR stool screening (HGC + Ss)

- N=556 asymptomatic Dutch travellers to LMIC (>1 month); PT-stool
- 2 weeks after return (HGC-PCR)
- 12 weeks after return (HGC + Ss)

Giardia N=29 (5%); 6 before travel

Cryptosporidium N=4 / *E. histolytica* N=0 / *Strongyloides* N=1

Schistosoma serology in 145/200 to SSA
N=9 seroconverted, 7/9 asymptomatic

Conclusion:

- Screening of asymptomatic travellers by stool PCR HGC + Ss: not efficient
- Serology *Schistosoma*: yes, if exposed (SSA)
NAAT will replace microscopy as a routine diagnostic test

I think it is a mammoth

Cartoon – early diagnosis

Mmmmm...Let’s first see our PCR result

Importance of EQAS in NAAT
Helminths: Cool et al., (manuscript in prep)
Take home’s; Trends in stool parasite diagnostics:

- Reduction of observer-dependent techniques
- Majority of negatives => drives high-throughput, multiplex approach
- Less by discipline => syndromic based diagnostic approach

Parasite PCR in routine setting: need for standardization, QC, EQAS

- Centralisation of diagnostic expertise; for complicated cases
 - Full microscopy (specific symptoms; exposure in tropics, immune compromised)
 - Serology & specific PCR for rare parasites

Clinicians be aware:
Which targets are fully covered in your diagnostic setting?
Thank you!

Research = Teamwork

Besides acknowledgements to the funders; many thanks to colleagues, and (international) collaborators

© Dept Parasitology - LUMC

Part of the LUMC Center of Infectious Diseases Schisto-CoHSI team