How to reach consolidation in an infected bone, microbiological and antibiotic principles

Pr Eric Senneville, MD, PhD

Infectious Diseases Department, Gustave Dron Hospital of Tourcoing
French National Referent Center for Bone and Joint Infections, Roger Salengro Hospital of Lille
Faculty of Medicine, EA 2694
Lille University, France

ESCMID post-graduate course Groningen 2019
Board Member/Advisory Panel: MSD, NOVARTIS-PHARMA, SANOFI-AVENTIS
Consultant: CEPHEID, DIAXONHIT
Research Support: MSD
Congress support: MSD, CEPHEID, DIAXONHIT, BAYER, NOVARTIS-PHARMA, CORREVIO, SHIONOGI, PFIZER
Stock/Shareholder: NONE
Employee: NONE
Other: NONE
Source of the infection

• Open fracture: through the skin
• During surgery: contamination of the fracture site during the intervention
• Spread of a wound infection to the fracture site
• Spread of a deep infection foci (abcess) to the fracture site

• Hematogenous?
Bacterial distribution of fracture-related infections

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>30-42%</td>
</tr>
<tr>
<td>Coagulase-negative staphylococci</td>
<td>20-39%</td>
</tr>
<tr>
<td>Enterobacteriaceae*</td>
<td>14-27%</td>
</tr>
<tr>
<td>Anaerobes</td>
<td>16%</td>
</tr>
<tr>
<td>Streptococci</td>
<td>11%</td>
</tr>
</tbody>
</table>

*: MDR GNB especially in polytrauma patients with prolonged ICU stay
Biofilm
Biofilm

- Antibiotic diffusion
- Phagocytes/Complement diffusion
- Stationary growth phase
- Intracellular position
- Protein concentration
- Enzymes production
- Bacterial inoculum
- Mutation rates

Reduced activity of most antibiotics; surgery is needed
Persisting microorganisms

Intracellular survival

Biofilm formation

S. aureus

Osteoblast

Osteocyte

Osteoclast

Implant

Slide from Dr J Josse
S. aureus infection increases osteoclastic activity
Role of antibiotics

• To help complete the scheduled surgical plan!
• The main goal of the management strategy is FUSION
• Infection remission is a secondary (but welcome!) objective

• 2 distincts aspects of the antimicrobial treatment:
 • To help surgeons conduct the surgical plan (i.e., combat evident infection-pus, tissue damage including bone necrosis= extra cellular microorganisms in exponential growth phase)
 • To prevent any recurrent infection (i.e., combat « persisters microorganisms» = biofilm and intracellular cells)
Management strategies

• Acute infection (\(\text{? One month}\))
 • Debridement antibiotics and implant retention (DAIR)

• Chronic infection
 • Implant replacement (+/- bone reconstruction)
 • One-stage
 • Two-stage
 • Retention of the infected implants
Management strategies

<table>
<thead>
<tr>
<th>Acute infection (? One month)</th>
<th>Fracture healed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Debridement antibiotics and implant retention (DAIR)</td>
<td>• Yes</td>
</tr>
<tr>
<td>• Chronic infection</td>
<td>• No</td>
</tr>
<tr>
<td>• Implant replacement (+/- bone reconstruction)</td>
<td>• Implant replacement (1/2 stage) = antibiofilm Abx (ERADICATION)</td>
</tr>
<tr>
<td>• One-stage</td>
<td>• Implant retention = DAIR ± SAT (ERADICATION ± SUPPRESSION)</td>
</tr>
<tr>
<td>• Two-stage</td>
<td></td>
</tr>
<tr>
<td>• Retention of the infected implants</td>
<td></td>
</tr>
</tbody>
</table>

• Acute infection (? One month): Debridement, antibiotics, and implant retention (DAIR).

• Chronic infection:
 - Implant replacement (+/- bone reconstruction)
 - One-stage
 - Two-stage
 - Retention of the infected implants

• Fracture healed?
 - Yes: Implant removal = treatment of (chronic?) osteomyelitis (ERADICATION)
 - No: Implant replacement (1/2 stage) = antibiofilm Abx (ERADICATION)
Simples rules

- Antibiotic-free period prior to any interventions (except in case of emergency)
- Reliable (i.e., deep, “no touch” technique, change of the instruments, multiple) samples during each (re)intervention
- Empirical peroperative broad-spectrum antibiotics in every intervention with debridement and retention of the infected implants or implant insertion
- Multidisciplinary discussion BEFORE the intervention is done!
Surgery (DAIR, 1 stage or 2nd intervention of a 2 stage replacement)

Peroperative sample\textbf{S}

Peroperative empirical antibiotic therapy debuted after sampling:
- bactericidal
- broad spectrum
- IV, high doses

\textbf{« no touch »} technique
Sterile surgical tools

No antibiotic prophylaxis (?)

No previous antibiotic treatment in the 2 weeks before (if feasible)

D0

D5-14

Antibiotic therapy targeted to the sample culture results:
- active in biofilm (DAIR/1StR)
- narrow spectrum
- high oral bioavailability
Per-operative (empiric) antibiotic treatment

- **Gram Positive Cocci**
 - staphylococci (including MR)
 - *S. aureus*
 - CoNS
 - streptococci/enterococci
 - strict anaerobes *

- **Gram Negative Bacilli**
 - Enterobacteriaceae
 - *P. aeruginosa*
 - other

- **Anaerobes**

- **Fungi**

 - **Vancomycin**
 - Teicoplanin (weak coverage of CoNS)
 - Linezolid* Tedizolid*
 - Tigecyclin*
 - Daptomycin
 - Ceftaroline, Ceftobiprole

 - **Piperacillin-tazobactam**
 - Ticarcillin-clavulanic acid
 - Imi/Mero-penem
 - (Ceftolozane-tazobactam, Ceftazidime-avibactam)

 - **Echinocandin**

* : active against anaerobes but only bacteriostatic
Antibiotics bone concentration

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>MIC (mg/liter)</th>
<th>Usual plasmatic concn (mg/liter)</th>
<th>Usual bone/plasma ratio</th>
<th>Conc (mg/liter)b</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C_{min}</td>
<td>C_{bone}</td>
</tr>
<tr>
<td>Beta-lactams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxacillin</td>
<td>0.094</td>
<td>50</td>
<td>0.17</td>
<td>3.33</td>
<td>10</td>
</tr>
<tr>
<td>Ceftaroline</td>
<td>0.19</td>
<td>20</td>
<td>0.19</td>
<td>1.33</td>
<td>4</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>0.032</td>
<td>4—14</td>
<td>0.35</td>
<td>1.33</td>
<td>4</td>
</tr>
<tr>
<td>Fosfomycin</td>
<td>2</td>
<td>4—14</td>
<td>0.35</td>
<td>1.33</td>
<td>4</td>
</tr>
<tr>
<td>Glyco/lipopeptides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vancomycin</td>
<td>1.5</td>
<td>20—40</td>
<td>0.21</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Teicoplanin</td>
<td>1.5</td>
<td>10—70</td>
<td>0.21</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Daptomycin</td>
<td>0.19</td>
<td>4—11</td>
<td>0.24</td>
<td>1.7</td>
<td>5</td>
</tr>
<tr>
<td>Linezolid</td>
<td>1</td>
<td>20</td>
<td>0.4</td>
<td>2.67</td>
<td>8</td>
</tr>
<tr>
<td>Ofl oxacin</td>
<td>0.5</td>
<td>5</td>
<td>0.5</td>
<td>0.67</td>
<td>2</td>
</tr>
<tr>
<td>Rifampin</td>
<td>0.004</td>
<td>10—30</td>
<td>0.27</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>0.125</td>
<td>0.2—1.5</td>
<td>0.35</td>
<td>0.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Antibiotic concentrations in Diabetic Foot Osteomyelitis

- Fosfomycin (1)
- Daptomycin (2)
- Linezolid (3)

Antibiotics intraosteoelastic concentration

Valour F et al. AAC 2015
Rifampicin

- Sustained activity in staphylococcal biofilms
- Active against MRSA and MRSE
- Almost 100% oral bioavailability
- Numerous studies showing its efficacy in both clinical, in vivo and in vitro experimental studies:
 - Drancourt. J Antimicrob Chemother 1997; 39: 235–240, etc...

- Limits:
 - never use as monotherapy
 - never use in empirical treatment
 - no place in acute (fever, bacteremia, large inocula, ..)
 - tolerance, drug-drug interactions
Fluoroquinolone Pharmacokinetic Parameters

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Dosage (mg)</th>
<th>PO /j</th>
<th>C_{max} (mg/l)</th>
<th>oral BD (%)</th>
<th>t1/2 (h)</th>
<th>D Vol (l/kg)</th>
<th>Renal Elim. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norfloxacin</td>
<td>400</td>
<td>2 x</td>
<td>1.6</td>
<td>50%</td>
<td>4-5</td>
<td>1.5</td>
<td>25-40</td>
</tr>
<tr>
<td>Pefloxacine</td>
<td>400</td>
<td>2 x</td>
<td>4.6</td>
<td>>90%</td>
<td>10</td>
<td>1.5-2.0</td>
<td>30-60</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>500</td>
<td>2 x</td>
<td>1.5</td>
<td>60-80%</td>
<td>3-5</td>
<td>2.5-5.0</td>
<td>30-50</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>400</td>
<td>2 x</td>
<td>3.1</td>
<td>85-95%</td>
<td>5-7</td>
<td>1.2</td>
<td>70-85</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>500</td>
<td>1 x</td>
<td>8.7</td>
<td>>90%</td>
<td>6-8</td>
<td>0.5</td>
<td>85-90</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>400</td>
<td>1 x</td>
<td>3.6</td>
<td>90%</td>
<td>10</td>
<td>2</td>
<td>20-30</td>
</tr>
</tbody>
</table>
Predictors of outcome in DAIR approach for staphylococcal PJIs: rôle of rifampicin combinations

Zimmerli W. JAMA 1998; 279:1537
Senneville E. Clin Infect Dis 2011; 53: 334
Predictors of outcome in DAIR approach for staphylococcal PJIs: rôle of rifampicin fluoroquinolone combinations

Puhto AP et al. Int Orthop 2015
Antibiotic regimens for staphylococci implant-associated bone infections

1st choice:
\begin{itemize}
 \item rifampicin + [levofloxacin or doxy/minocycline or TMP-SMX or line/tedizolide or fusidic acid]
 \item rifampicine + [daptomycine or teicoplanine or tigecycline or dalbavancine]
\end{itemize}

2nd choice [if rifampicin is contraindicated (resistance, tolerance)]:
\begin{itemize}
 \item line/tedizolide monotherapy
 \item daptomycine + [levofloxacin or doxy/mino/tigecycline or TMP-SMX or fusidic acid]
\end{itemize}

French National Center for Complex Bone and Joint Infections North-West Region (CRIOAC Lille-Tourcoing)
Predictors of outcome in DAIR approach for GNB PJIs: role of fluoroquinolone combinations

D. Rodríguez-Pardo et al. Clin Microb Infect 2014
Antibiotic regimens for GNB implant-associated bone infections

1st choice:
- Cefepime or any active BL agent + (levofloxacin or ciprofloxacin) 1 to 3 weeks
- then FQ monotherapy

2nd choice [if FQ contraindicated (resistance, tolerance)]:
- Cefepime or any active BL agent + (colistin, doxy/mino/tigecycline, fosfomycin, aminoglycoside)
- Any active agent in case of multiresistance (cefiderocol??, bacteriophages, ...)

French National Center for Complex Bone and Joint Infections North-West Region (CRIOAC Lille-Tourcoing)
Oral versus intravenous antibiotic therapy

- **2012 IDSA Guidelines :**
 - Staphylococcal PJI with debridement :
 « Two to 6 weeks of [...] intravenous antimicrobial therapy [...]”
 - Other organisms PJI with debridement :
 “Four to 6 weeks of intravenous or highly bioavailable oral antimicrobial therapy”
 - PJI following resection arthroplasty :
 “Four to 6 weeks of intravenous or highly bioavailable oral therapy.”

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Oral bioavailability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levofloxacin</td>
<td>90-100%</td>
</tr>
<tr>
<td>Linezolid</td>
<td>95-100%</td>
</tr>
<tr>
<td>TMP-SMX</td>
<td>90%</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>90%</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>90-95%</td>
</tr>
<tr>
<td>Fusidic acid</td>
<td>> 90%</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>85%</td>
</tr>
</tbody>
</table>
Oral versus intravenous antibiotic treatment for bone and joint infections (OVIVA): study protocol for a randomised controlled trial

Eligible for trial and has completed seven days or less of IV treatment

- Informed Consent
- Randomise

IV treatment, individual antibiotic chosen based on bacteria likely to be present

- Tailored IV treatment based on lab results
- Monitor progress, but antibiotic choice not influenced by study.

PO treatment, individual antibiotic chosen based on bacteria likely to be present

- Tailored PO treatment based on lab results

Culture results awaited.

Culture results available.

First six weeks
Oral versus parenteral antibiotic therapy for bone and joint infections: OVIVA study

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Oral Group</th>
<th>Intravenous Group</th>
<th>Risk Difference (90% CI; 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intention-to-treat population</td>
<td>70.0/527</td>
<td>77.3/527</td>
<td>−1.4 (−4.9 to 2.2; −5.6 to 2.9)</td>
</tr>
<tr>
<td>Modified intention-to-treat population</td>
<td>67/509</td>
<td>74/506</td>
<td>−1.5 (−5.0 to 2.1; −5.7 to 2.8)</td>
</tr>
<tr>
<td>Per-protocol population</td>
<td>61/466</td>
<td>69/443</td>
<td>−2.5 (−6.3 to 1.3; −7.0 to 2.1)</td>
</tr>
<tr>
<td>Worst-case sensitivity analysis</td>
<td>85/527</td>
<td>74/527</td>
<td>2.1 (−1.5 to 5.7; −2.2 to 6.4)</td>
</tr>
</tbody>
</table>

Li HK et al. NEJM 2019
Oral Antibiotic treatment?
Epidemiology of infected Diabetic Foot Ulcers in a tertiary hospital in India

Antibiotic Susceptibilities

Saseedharan S et al. BJ Microb 2018
Conclusions

- The principles established for the management of PJIs may apply to Fracture-Related Infections (FRIs)
- Fracture healing is THE main goal
- Plans should be discussed BEFORE any surgical decision regarding the indication and the choice of the antibiotic treatment
- Again and again: tailored case management in a MULTIDISCIPLINARY setting
- Place of new agents against persisters?
What do you mean "left leg"?