Pre-Clinical Infection Models: Experimental and Clinical Data Supporting PK/PD Approaches

Brian T. Tsuji, Pharm.D., FIDSA
Professor of Pharmacy
School of Pharmacy and Pharmaceutical Sciences
University at Buffalo, State University of New York
Director, Laboratory for Antimicrobial Pharmacodynamics
PK/PD

Walking the tightrope between efficacy and toxicity

PK/PD Optimization

- Maximize Killing
- Minimize Resistance
- Exploit Differing Mechanisms of Action & PK/PD
- Minimize Toxicity

Optimize combination of antibiotics in difficult to treat infections based PK/PD strategies
Clinical Outcomes and Kill
Mortality and In Vitro Outcomes

Miyazaki et. al. AAC 2012.
Microbiologic Considerations in In vitro systems

• Strain Selection
• Bacterial Density
• Duration of Treatment
• Endpoint of study
• Resistance Plating and Drug Plates
• Time Course
Recommendations for Robust non-clinical data

Generating robust and informative nonclinical *in vitro* and *in vivo* bacterial infection model efficacy data to support translation to humans

Jürgen B. Bulitta¹,*, William Hope², Ann E. Eakin³, Tina Guina³, Vincent H. Tam⁴,
Arnold Louie⁵, George L. Drusano⁵, Jennifer L. Hoover⁶,*
Screening Tools

Inhibitory Tools: Checkerboard

tps://doi.org/10.1371/journal.pone.0126479
In Vitro Pharmacodynamic Models
One Compartment and Hollow Fiber Infection Model
Studying Combinations
In Vitro Compartment Model

Blasser 1985
Colistin Mono Front-Loading: High-Dose Intensity Regimens toward COMBOS

Colistin vs. P. aeruginosa

Traditional: Patient Package
Insert Regimens and Clinically Achievable up to 2mg/L q24h

Higher Dosage Regimens:
- 4mg/L q24h
- 8mg/L q24h
- 6mg/L q24h x1 then 2mg/L q24h
Hollow Fiber Infection Model (HFIM)
Monotherapy Colistin: Rapid Amplification of Resistance in MDR *P. aeruginosa*

Monotherapy: Paradoxical Effect for Polymyxin B in A. baumannii

Polymyxin-heteroresistant Carbapenem-Resistant A. baumannii

Exploring Novel Dosing: Fusidic Acid
Front-Loading: High-Dose Intensity Regimens

600 mg q12h

1200 mg q12h on day 1, then 600 mg q12h

1500 mg q12h on day 1, then 600 mg q12h

CEM-101 (Fusidic Acid) vs. S. aureus
Phase II Dose Selected... Based on PK/PD Principles and Emergence of Resistance

How can we translate this to patients
Understanding development of resistance in a patient from an NIH Funded PK/PD/TD population study for CMS/Colistin.
Evolution of polymyxin-resistance toward complete Pandrug-Resistant A. baumannii

Recapitulation of colistin + meropenem patient 149 received in the clinical study

Evolution of polymyxin-resistance *A. baumannii*: HFIM-derived vs. patient-derived

![Graph showing the evolution of polymyxin resistance in patient and in vitro settings.](image)

Lenhard JR, Thamlikitkul V, Silviera FP, et al. Journal of Antimicrobial Chemotherapy. Accepted
“Among 17 patients who were treated for colistin-resistant *A. baumannii* infections, 15 received various CMS-based combination regimens. The most common regimen was a combination of CMS, a carbapenem, and ampicillin-sulbactam (n = 7). None of these 7 patients died within 30 days of the infection, within 30 days of the infection, compared with 6 of 10 (60%) patients who received other antimicrobial regimens (P = .03 by Fisher exact test).”

3-Drug Combination vs. nearly PDR A. baumannii from Patient 149: Complete eradication by 96h

03-149.2: $\text{MIC}_{\text{polyB}}=32$, $\text{MIC}_{\text{meropenem}}=64$, $\text{MIC}_{\text{Ampicillin/Sulbactam}}=32$

Combating Next Generation Resistance Mechanisms and Profiling Populations
Finding New Solutions for PDR Enterobacteriaceae

MCR1_NJ Plasmid: MCR-1, NDM-5

Finding New Solutions for PDR Enterobacteriaceae

Toward Molecularly Targeted PK/PD Strategies
PK/PD Targeting Molecular Mechanisms of Resistance

- NDM
 - Aztreonam

- ESBL CTX M-15
 - Ceftazidime
 - Avibactam
CAZ-AVI + Aztreonam = Synergy

Figure 2. Synergy between ceftazidime-avibactam and aztreonam (Etest)

CAZ-AVI + Aztreonam = Synergy

<table>
<thead>
<tr>
<th></th>
<th>ESBL</th>
<th>KPC</th>
<th>Metallo β-lactamase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piperacillin-Tazobactam</td>
<td>S</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>3rd Generation Cephalosporins</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Ceftazidime-Avibactam</td>
<td>S</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>Cefepime</td>
<td>I/R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Meropenem</td>
<td>S</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>R</td>
<td>R</td>
<td>S</td>
</tr>
</tbody>
</table>
In vertebrate models

- **G. mellonella**, Larvae of wax moth, have been used to study pathogenicity

Colistin Alone <50% Survival

Colistin Combo 100% Survival

Hornsley et. al. AAC. 2012.
The Future: Tracking \textit{in vivo} Evolution (PNAS 2007)

![Diagram showing the evolution of bacterial strains over time]

Table 1. Sequential appearance of 35 point mutations in the blood isolates

<table>
<thead>
<tr>
<th>Date of isolation, month/day/year</th>
<th>Isolate</th>
<th>MIC, (\mu g/ml)</th>
<th>Numeric identifier of mutation†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vancomycin</td>
<td>Rifampin</td>
</tr>
<tr>
<td>7/20/2000</td>
<td>JH1</td>
<td>1.0</td>
<td>0.012</td>
</tr>
<tr>
<td>9/20/2000</td>
<td>JH2</td>
<td>4.0</td>
<td>16</td>
</tr>
<tr>
<td>10/1/2000</td>
<td>JH5</td>
<td>6.0</td>
<td>16</td>
</tr>
<tr>
<td>10/6/2000</td>
<td>JH6</td>
<td>8.0</td>
<td>16</td>
</tr>
<tr>
<td>10/13/2000</td>
<td>JH9</td>
<td>8.0</td>
<td>16</td>
</tr>
</tbody>
</table>

*E-test. †, Numbers 1–35 are assigned to mutations in the time order of their appearance. The presence of a mutation is indicated by \bullet, and the absence of a mutation due to possible reversion is indicated by \circ. ND, not determined. Mutations 34 and 35 between JH1 and JH9 were predicted to be in JH9 but could not be PCR sequenced (see SI Appendix for a discussion). ‡, in \textit{bla}R7 on the plasmid; *, in \textit{SA}1702 in the \textit{wva} operon; $\|$ in \textit{poB}; $\|$ in \textit{poC}; **, in gene \textit{SA}1129 with unknown function; ‡, in \textit{SA}1249; †, in \textit{agr}C in the \textit{agr} locus; *, in \textit{yycF} in the \textit{yyc} gene cluster with \textit{yycF} and \textit{yycG}. \textit{SA}XXXX: N315 identifiers (17).
PK/PD Rabbit Infection Model

2 Rabbit Infection Models: Pneumonia and Tunnelled Silastic Vascular Catheter

Efficacy: Quantitative Culture in blood, lung, spleen, kidney and liver

Toxicity: Serum samples, histopathology
PK/PD studies greatly assisted development of these dosing guidelines
Inviting you ALL out to Join ISAP as a member
Our Annual Meeting - Here on Friday 4pm
isap.org
Alan Forrest and 10 Excellent Young
Investigator Talks on PK/PD
Mini non-alcoholic cocktail reception
Acknowledgements

Clinical Pharmacology and Pharmaceutics

Alan Forrest PharmD
Juergen Bulitta, Ph.D.

Jian Li, Ph.D.
Roger Nation, Ph.D.

Tim Murphy, M.D.
Melinda Pettigrew, Ph.D.

Biochemistry and Genomics

Mark Sutton, Ph.D.
Steven Gill, Ph.D.
Liang Chen, Ph.D.
Barry Kreiswirth, Ph.D.

Clinical Studies and in vivo pharmacology

Keith Kaye, M.D., Jason Pogue, Pharm.D.
Michael Satlin, M.D., Thomas Walsh, M.D.

Grateful to National Institutes of Health
NIAID/NIH: R01AI079330 (Nation)
NIAID/NIH: R01AI1119900 (Tsuji)
NIAID/NIH: R01AI19641 (Murphy)

Our Buffalo Team

CTSI

Zack Bulman, Pharm.D.
Nicholas Smith, Pharm.D/Ph.D. Cand.
Justin Lenhard, Pharm.D.

Resistance in Asia

Visanu Thamlikitkul, M.D.

PK/PD & HFIM

George Drusano, M.D.
Arnold Louie, M.D.