New imaging techniques in the diagnosis of infective endocarditis

Bernard Iung
Bichat Hospital and Paris Diderot University
Paris, France
ECOMID, 15 April 2019
Disclosures

Bernard Iung, MD

Consultancy for Edwards Lifesciences

Speaker’s fee from Boehringer Ingelheim and Novartis
Diagnostic features of infective endocarditis

- Persistent bacteremia
- Predisposing heart disease
- Active endocardial pathology
- Vascular phenomena
Vegetations

- Mobile mass implanted on upstream side of the valve
 - Location
 - Number
 - Maximal length
 - Mobility

- Diagnostic value
 - Sensitivity: TTE 50-70%, TEE >90%
 - Specificity > 90%

- Histology: septic thrombus

- Major criterion in Duke classification
Destructive Valvular Lesions

- Perforations or tears
 - Direct visualisation of the defect (TEE)
 - Regurgitant jet originating from the leaflet
- Valve prolapse (chordal rupture, commissural lesion)
- Abscess / valvular aneurysms
 - Leaflet thickening ± deformation
 - Isolated or adjacent to a vegetation
 - Evolution toward perforation
Perivalvular lesions

- Abscess
 - Perivalvular neocavity
 - May cause regurgitation or fistulae
 - Initially limited to perivalvular thickening
 - Sensitivity: TTE 30-50%, TEE 80-90%

- New paraprosthetic dehiscence
 - Paraprosthetic regurgitation
 - Check if it was not previously diagnosed
 - Major criterion in Duke classification
3D-TEE
Regurgitations

- Valvular (valve destruction)

- Perivalvular
 - Fistulised abscess in upstream and downstream cavities
 - Paraprosthetic regurgitation

- Pitfalls in quantification of regurgitations
 - Eccentric jets
 - Acute regurgitations (concern on the validity of severity criteria)
Modified diagnostic criteria for infective endocarditis

<table>
<thead>
<tr>
<th>Major criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blood cultures positive for IE</td>
</tr>
<tr>
<td>a. Typical microorganisms consistent with IE from 2 separate blood cultures:</td>
</tr>
<tr>
<td>• Viridans streptococci, Streptococcus galolyticus (Streptococcus bovis), HACEK group, Staphylococcus aureus; or</td>
</tr>
<tr>
<td>• Community-acquired enterococci, in the absence of a primary focus; or</td>
</tr>
<tr>
<td>b. Microorganisms consistent with IE from persistently positive blood cultures:</td>
</tr>
<tr>
<td>• ≥2 positive blood cultures of blood samples drawn >12 h apart; or</td>
</tr>
<tr>
<td>• All of 3 or a majority of ≥4 separate cultures of blood (with first and last samples drawn ≥1 h apart); or</td>
</tr>
<tr>
<td>c. Single positive blood culture for Coxiella burnetii or phase 1 IgG antibody titre >1:800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Predisposition such as predisposing heart condition, or injection drug use.</td>
</tr>
<tr>
<td>2. Fever defined as temperature >38°C.</td>
</tr>
<tr>
<td>3. Vascular phenomena (including those detected by imaging only): major arterial emboli, septic pulmonary infarcts, infectious (mycotic) aneurysm, intracranial haemorrhage, conjunctival haemorrhages, and Janeway's lesions.</td>
</tr>
<tr>
<td>4. Immunological phenomena: glomerulonephritis, Osler's nodes, Roth's spots, and rheumatoid factor.</td>
</tr>
<tr>
<td>5. Microbiological evidence: positive blood culture but does not meet a major criterion as noted above or serological evidence of active infection with organism consistent with IE.</td>
</tr>
</tbody>
</table>
Echocardiography of Valve Prostheses

Bioprostheses: lesions on leaflets / ring, perivalvular abscesses
Mechanical prostheses: vegetations on ring, perivalvular abscesses

• Limitations of echocardiography
 – artifacts: false +, false – (more frequent with TTE)
 – shadowing : false –
 – Aortic valve
 • Poor visualization of posterior part with TTE
 • Poor visualization of anterior part with TEE

• Aortic tube (partial, Bentall)
 Frequent false – in peritubular area
Echocardiography for suspected infective endocarditis

If initial TOE is negative but high suspicion for IE remains, repeat TTE and/or TOE within 5–7 days.

IE = infective endocarditis; TOE = transoesophageal echocardiography; TTE = transthoracic echocardiography.

*TOE is not mandatory in isolated right-sided native valve IE with good quality TTE examination and unequivocal echocardiographic findings.
Cardiac CT Scan / MRI

In particular for IE on prosthetic valves and/or prosthetic tubes when TTE and TEE are inconclusive.

Sensitivity of CT scan > 90% vs. surgical findings

(Feuchtner et al. J Am Coll Cardiol 2009; 53:436-44
18F FDG PET Scan

Incorporation of 18F FDG by activated leukocytes, monocyte-macrophages, and CD4+ T lymphocytes
18F FDG PET Scan

- 72 pts with suspected prosthetic endocarditis
 - ↑ sensitivity of Duke criteria from 70 to 97%
 - ↓ possible IE from 53 to 32%

- 92 pts with suspected IE on prosthesis or cardiac devices
 - ↑ sensitivity of Duke criteria from 52 to 91%
 - Reclassification of 90% of possible IE
 - 95% definite rejected IE after PET-CT
 - Better performance when combined with CT angiography

 (Pizzi et al. Circulation 2015;132:1113-26)
16 patients referred for TAVR IE suspicion

Final diagnosis (expert-team at 3 months FU):
- definite-IE in 10
- possible-IE in 1
- rejected-IE in 5.

Echocardiography = major criteria in 5 patients (5 vegetations, 2 paravalvular lesions) and new regurgitation in only 1 of them.

Leaflet thickening/increased mean gradient in 70% and 80% of definite-IE.

(Salaun et al. JACC Cardiovasc Imaging 2018;11:143-6)
18F FDG PET Scan
Limitations of 18F FDG PET CT

- Availability, need for specific expertise in cardiac imaging
- Radiation
- High myocardial uptake: need for specific diet
- Lower sensitivity in IE on native valves
 - Resolution (4 mm)
 - Valve mobility
- False negatives due to prolonged prior antibiotic therapy
 (Swart et al. Circulation 2018; 138:1412-27)
Limitations of $^{18}\text{F} \text{FDG PET CT}$

- False positives due to inflammation (3 post-operative months)
- False positive periprosthetic uptake years after surgery
- Importance of uptake pattern (heterogenity)

 \[\text{(Mathieu et al. Circ Cardiovasc Imaging 2017;10:e005585)} \]

- Artifacts from pacing/defibrillation leads (need for specific correction)
- Diagnostic performance can be improved
 - CT scan with iodine injection

 \[\text{(Pizzi et al. Circulation 2015; 132:1113-26)} \]
 - Visual and quantitative assessment of $^{18}\text{F} \text{FDG uptake}$

 \[\text{(Swart et al. Circulation 2018; 138:1412-27)} \]
Radiolabelled Leucocyte Scintigraphy

- Autologous leucocytes are radiolabelled with 99mTc and injected
- Radiolabelled leucocytes accumulate at the site of active infection
- Differentiation between inflammation and infection
18F FDG PET CT and Leucocyte Scintigraphy

• 39 pts with suspected prosthetic IE and inconclusive echo

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Positive Pred. Value (%)</th>
<th>Negative Pred. Value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET CT</td>
<td>93</td>
<td>71</td>
<td>68</td>
<td>97</td>
</tr>
<tr>
<td>Leucocytes</td>
<td>64</td>
<td>100</td>
<td>100</td>
<td>81</td>
</tr>
</tbody>
</table>

• Discrepancies in 12 pts (31%)
 – False – leucocyte scintigraphy (non-pyogenic microorganisms)
 – False + PET CT (< 2 months after surgery)

• Complementarity → possibility of a sequential approach

Modified diagnostic criteria for infective endocarditis

<table>
<thead>
<tr>
<th>Major criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blood cultures positive for IE</td>
</tr>
<tr>
<td>a. Typical microorganisms consistent with IE from 2 separate blood cultures:</td>
</tr>
<tr>
<td>• Viridans streptococci, Streptococcus galolyticus (Streptococcus bovis), HACEK group, Staphylococcus aureus; or</td>
</tr>
<tr>
<td>• Community-acquired enterococci, in the absence of a primary focus; or</td>
</tr>
<tr>
<td>b. Microorganisms consistent with IE from persistently positive blood cultures:</td>
</tr>
<tr>
<td>• ≥2 positive blood cultures of blood samples drawn >12 h apart; or</td>
</tr>
<tr>
<td>• All of 3 or a majority of ≥4 separate cultures of blood (with first and last samples drawn ≥1 h apart); or</td>
</tr>
<tr>
<td>c. Single positive blood culture for Coxiella burnetii or phase I IgG antibody titre >1:800</td>
</tr>
<tr>
<td>2. Imaging positive for IE</td>
</tr>
<tr>
<td>a. Echocardiogram positive for IE:</td>
</tr>
<tr>
<td>• Vegetation;</td>
</tr>
<tr>
<td>• Abscess, pseudoaneurysm, intracardiac fistula;</td>
</tr>
<tr>
<td>• Valvular perforation or aneurysm;</td>
</tr>
<tr>
<td>• New partial dehiscence of prosthetic valve;</td>
</tr>
<tr>
<td>b. Abnormal activity around the site of prosthetic valve implantation detected by 18F-FDG PET/CT (only if the prosthesis was implanted for >3 months) or radiolabelled leukocytes SPECT/CT;</td>
</tr>
<tr>
<td>c. Definite paraavalvular lesions by cardiac CT.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Predisposition such as predisposing heart condition, or injection drug use.</td>
</tr>
<tr>
<td>2. Fever defined as temperature >38°C.</td>
</tr>
<tr>
<td>3. Vascular phenomena (including those detected by imaging only):</td>
</tr>
<tr>
<td>• Major arterial emboli, septic pulmonary infarcts, infectious (mycotic) aneurysm, intracranial haemorrhage, conjunctival haemorrhages, and Janeway’s lesions.</td>
</tr>
<tr>
<td>4. Immunological phenomena: glomerulonephritis, Osler’s nodes, Roth’s spots, and rheumatoid factor.</td>
</tr>
<tr>
<td>5. Microbiological evidence: positive blood culture but does not meet a major criterion as noted above or serological evidence of active infection with organism consistent with IE.</td>
</tr>
</tbody>
</table>
Algorithm for the diagnosis of infective endocarditis

Clinical suspicion of IE

Modified Duke criteria (Li)

- **Definite IE**
 - Native valve
 - 1 - Repeat echo (TTE + TOE)/microbiology
 - 2 - Imaging for embolic events
 - 3 - Cardiac CT
 - Prosthetic valve
 - 1 - Repeat echo (TTE + TOE)/microbiology
 - 2 - 18F-FDG PET/CT or Leucocytes labeled SPECT/CT
 - 3 - Cardiac CT
 - 4 - Imaging for embolic events

ESC 2015 modified diagnostic criteria

- **Definite IE**
- **Possible IE**
- **Rejected IE**

CT = computed tomography; FDG = fluorodeoxyglucose; IE = infective endocarditis; PET = positron emission tomography; SPECT = single photon emission computerized tomography; TOE = transoesophageal echocardiography; TTE = transthoracic echocardiography.

May include cerebral MRI, whole body CT, and/or PET/CT.

See Table 14.
Neurologic Events

Prospective Series with Systematic Imaging Imaging

<table>
<thead>
<tr>
<th>Study</th>
<th>n</th>
<th>Imaging</th>
<th>Symptomatic Events (%)</th>
<th>Asymptomatic Embolism (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thuny et al.</td>
<td>453</td>
<td>CT</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>Snygg-Martín et al.</td>
<td>49</td>
<td>MRI</td>
<td>35</td>
<td>48</td>
</tr>
<tr>
<td>Cooper et al.</td>
<td>40</td>
<td>MRI</td>
<td>32</td>
<td>37</td>
</tr>
<tr>
<td>Duval et al.</td>
<td>130</td>
<td>MRI</td>
<td>12</td>
<td>47</td>
</tr>
</tbody>
</table>

Thuny et al. Eur Heart J 2007;28:1155-61
Cooper et al. Circulation 2009;120:585-91
Cerebral MRI in IE: IMAGE study

Systematic angio-MRI in 130 patients with acute infective endocarditis

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Symptoms</th>
<th>No symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=130</td>
<td>n=16</td>
<td>n=114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesion Type</th>
<th>Total</th>
<th>Symptoms</th>
<th>No symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1 lesion</td>
<td>106 (82%)</td>
<td>16 (100%)</td>
<td>90 (79%)</td>
</tr>
<tr>
<td>Ischaemic lesions</td>
<td>68 (52%)</td>
<td>14 (88%)</td>
<td>54 (47%)</td>
</tr>
<tr>
<td>Large systematized lesions</td>
<td>33 (25%)</td>
<td>9 (56%)</td>
<td>24 (21%)</td>
</tr>
<tr>
<td>Small ischaemic lesions</td>
<td>60 (46%)</td>
<td>14 (88%)</td>
<td>46 (40%)</td>
</tr>
<tr>
<td>Haemorrhagic lesions</td>
<td>79 (61%)</td>
<td>10 (63%)</td>
<td>69 (61%)</td>
</tr>
<tr>
<td>Intra-parenchymal haemorrhage</td>
<td>10 (8%)</td>
<td>3 (19%)</td>
<td>7 (6%)</td>
</tr>
<tr>
<td>Microbleeds</td>
<td>74 (58%)</td>
<td>7 (44%)</td>
<td>67 (59%)</td>
</tr>
<tr>
<td>Subarachnoidal haemorrhage</td>
<td>11 (8%)</td>
<td>2 (13%)</td>
<td>9 (8%)</td>
</tr>
<tr>
<td>Unruptured aneurysms</td>
<td>10 (8%)</td>
<td>1 (6%)</td>
<td>9 (8%)</td>
</tr>
<tr>
<td>Cerebral abscess</td>
<td>8 (6%)</td>
<td>1 (6%)</td>
<td>7 (6%)</td>
</tr>
</tbody>
</table>

Impact of Cerebral MRI on Diagnosis

Change of diagnosis for 17 / 53 non-definite endocarditis (32%) Microbleeds were not taken into account for diagnosis

<table>
<thead>
<tr>
<th>Diagnostic before MRI</th>
<th>Definite n=77</th>
<th>Possible n=50</th>
<th>Excluded n=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic after MRI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definite n=91</td>
<td>77</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Possible n=39</td>
<td>36</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Excluded n=0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Impact of Cerebral MRI on Therapy

24 patients (18%)

- Anticoagulant therapy only n=1
- Antibiotic therapy only n=5
- Change in valvular surgery n=18
 - Change in date n=12 (6 delayed, 6 earlier)
 - Contra-indication n=2
 - Indication n=2
 - Type of indication n=1
 - Valvular substitute n=1
 - (associated to change in medical therapy in 3 patients)

Embolisation of mycotic aneurysm in 3 patients before surgery

Abdominal Imaging

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Spleen</th>
<th>Kidneys</th>
<th>Liver</th>
<th>Vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 European centres</td>
<td>384</td>
<td>13</td>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>AEPEI French survey</td>
<td>497</td>
<td>17</td>
<td>9</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Asymptomatic patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image Abdo *</td>
<td>58</td>
<td>26</td>
<td>9</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

* Systematic MRI

Thuny et al. Circulation 2005;112:69-75
Impact of Systematic Abdominal Imaging

- 58 patients from the IMAGE study who underwent both cerebral and abdominal MRI
- ≥ 1 abdominal lesion in 20 patients (34%)
- MRI led to upgrade Duke classification in 8 patients:
 - Due to cerebral MRI in 4 patients
 - Due to both cerebral and abdominal MRI in 4
 - Never exclusively due to abdominal MRI
- Changes in therapeutic decisions in 11 patients (19%):
 - Due to cerebral MRI in 4 patients
 - Due to both cerebral and abdominal MRI in 7
 - Never exclusively due to abdominal MRI

Impact of Systematic Abdominal Imaging

Systematic thoraco-abdomino-pelvic CT scan in 522 patients with suspected IE

- 217 (42%) had ≥ IE-related lesion
- Upgrade to definite IE in 0.8% of patients
- No impact on medical or surgical therapy
- Specific treatment needed in 1.9% of asymptomatic patients
- 15% acute renal failure within 5 days

Modified diagnostic criteria for infective endocarditis

<table>
<thead>
<tr>
<th>Major criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blood cultures positive for IE</td>
</tr>
<tr>
<td>a. Typical microorganisms consistent with IE from 2 separate blood cultures:</td>
</tr>
<tr>
<td>• Viridans streptococci, Streptococcus gallolyticus (Streptococcus bovis), HACEK group, Staphylococcus aureus; or</td>
</tr>
<tr>
<td>• Community-acquired enterococci, in the absence of a primary focus; or</td>
</tr>
<tr>
<td>b. Microorganisms consistent with IE from persistently positive blood cultures:</td>
</tr>
<tr>
<td>• ≥2 positive blood cultures of blood samples drawn >12 h apart; or</td>
</tr>
<tr>
<td>• All of 3 or a majority of ≥4 separate cultures of blood (with first and last samples drawn ≥1 h apart); or</td>
</tr>
<tr>
<td>c. Single positive blood culture for Coxiella burnetii or phase 1 IgG antibody titre >1:800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Predisposition such as predisposing heart condition, or injection drug use.</td>
</tr>
<tr>
<td>2. Fever defined as temperature >38°C.</td>
</tr>
<tr>
<td>3. Vascular phenomena (including those detected by imaging only):</td>
</tr>
<tr>
<td>• Major arterial emboli, septic pulmonary infarcts, infectious (mycotic) aneurysm, intracranial haemorrhage, conjunctival haemorrhages, and Janeway’s lesions.</td>
</tr>
<tr>
<td>4. Immunological phenomena: glomerulonephritis, Osler’s nodes, Roth’s spots, and rheumatoid factor.</td>
</tr>
<tr>
<td>5. Microbiological evidence: positive blood culture but does not meet a major criterion as noted above or serological evidence of active infection with organism consistent with IE.</td>
</tr>
</tbody>
</table>
Detection of Extra-Cardiac Lesions by 18F FDG PET CT

- Cardiac and extra-cardiac imaging in a single whole-body acquisition
- May detect portal of entry and/or embolic events
- Limited value of cerebral imaging due to high physiological uptake of 18F-FDG by the brain
Impact of systematic 18F FDG PET CT TEPVENDO Multicentre Prospective Study

Systematic 18F FDG PET SCAN in 140 patients treated for IE (80 definite IE): 70 IE on native valves, 70 prosthetic IE

- Cardiac uptake in 24% of native IE and 67% of prosthetic IE
- Extra-cardiac uptake in 51% of native IE and 44% of prosthetic IE
- Change in Duke classification in 6% of native IE and 24% of prosthetic IE
- Changes in diagnosis or therapy with PET scan in patients with
 - Possible IE
 - Negative echocardiography
 - Peri-valvular lesions

(Duval et al. submitted)
Infective Endocarditis on CIED

- 6-13% of cases of endocarditis
 (Athan et al. JAMA 2012;307:1727-35)

- Difficulties of diagnosis
 Frequent lead infection without vegetation (Klug et al. Circulation 2007;116:1349-55)

- Usefulness of nuclear imaging
 PET CT
 (Ploux et al. Heart Rhythm 2011;8:1478-81)
 Leucocyte scintigraphy (Erba et al. JACC Cardiovasc Imaging 2013;6:1075-86)

- Indication of device removal
IE on CIED

Visualisation of all parts of pacing leads and device pocket

Conclusions

• Echocardiography remains the cornerstone of the diagnosis of cardiac injury in IE. Its sensitivity is greatly increased with TEE.

• Multimodality imaging improves the diagnosis when echocardiography is doubtful or not conclusive:
 – Cardiac CT scan/MRI,
 – 18F FDG PET CT, possibly completed by leucocyte scintigraphy, particularly for IE on foreign material.
Conclusions

• Non-cardiac imaging frequently detects non-cardiac embolism which impacts diagnosis and therapeutic management:
 – Impact of cerebral imaging (in particular MRI),
 – Limited impact of abdominal imaging,
 – Promising perspectives of 18F FDG PET CT.

• Need for:
 – Tailored approach according to clinical context and results of investigations.
 – Specific expertise in imaging of infective endocarditis.
The Endocarditis Team

Clinician/Cardiologist
- Patient History
- Fulfilment of Duke Criteria
- Overall responsibility for in-patient & out-patient management

Primary care physician
- Patient History
- Symptoms
- Referral

Specialists
- Infectious disease specialist
- Renal physician
- Haematologist
- Rheumatologist
- Orthopaedic surgeons

Microbiologist
- Identification of aetiological agent
- Guidance on antimicrobial therapy

Histopathologist
- Microscopy of excised valve tissue/emboli/vegetation

Cardiac imaging specialist
- TTE
- TEE

Nuclear Physician (PET/CT)
- Echo inconclusive
- Surgical intervention (ICED)
- Monitoring embolic events & metastatic infection

Cardiac Surgeon
- Removal/replacement of valves and ICED
- Cardiac repair

CT/MRI specialists
- Monitoring embolic events & metastatic infection in cases of secondary complications

(Millar, Habib and Moore Heart 2016;102:796-807)