Diagnosis of Aspergillosis: Progress in Technologies and Approach

Kieren A. Marr MD MBA
Professor of Medicine and Oncology, Johns Hopkins University
Director, Transplant and Oncology Infectious Diseases
Vice Chair of Medicine, Innovation and Commercialization
Disclosures

• Consultant / Advisory Board
 – Amplyx, Cidara, Merck

• Royalties / Equity
 – MycoMed Technologies
Background

• Focus on invasive aspergillosis
• This talk will address use of *non-culture based biomarkers* to:
 – Predict disease risk
 – Indicate presence of infection
Nucleic acids

PCR

• Many years of research on PCR in tissue, BAL, blood
• Many in-house studies with non-standardized assays varied performance on BAL and blood, meta-analyses
• Several recent large studies on BAL:
 – 1555 samples / 3 yrs, tested using multiple in house and commercialized assays. Sensitivity 61 – 74% (GM 87%), up to 100% with GM combined\(^1\)
 – 1248 samples / 12 yrs: lower sensitivity (40%), increased with combined (74%) \(^2\)
• Results suggest utility with BAL, especially combined with GM, multiplexing enabling species ID & resistance genotype
• Recent efforts to optimize and standardize sample processing in EU cooperative

\(^1\)Guegan et al. JI 2018; 76
\(^2\)Hardak e al. IJID 2019; 3557
Cruciani et al. Cochrane DSR. 2015
Boch et al. CMI 22 (2016) 862
Chong et al. JAC 71 (2016) 3528
Nucleic acids
PCR

- Blood / plasma / serum complicated
 - Critical issues described for DNA extraction
 - Volume, buffers
 - Variation in commercial kits
 - Elution volumes
 - and more...

Protocol

- Sample Volume Critical
 - Volume < 0.5 ml
 - Positivity when detecting 10 genomes/sample = 78.9%*
 - irrespective of elution volume
 - Volume > 0.5 ml
 - Positivity when detecting 10 genomes/sample = 100%**
 - Elution volume < 100 µl

Notes

- Nucleic Acid Extraction using commercial kit
 - Kits successfully used:
 - Manual: Qiagen Qiamp DNA, Qiagen Ultrasens Virus, Qiagen Circulating NA Kit, Roche High Pure LV Roche High Pure Template PCR.
 - Automated: Roche MagNA Pure NA, Roche MagNA Pure Compact, Roche MagNA Pure LV, Qiagen EZ1 Virus 2.0, Qiagen QIASymphony, BioMerieux EasyMag

- False Positivity Rates in EAPCRI serum study:
 - Biomerieux EasyMag 1/4
 - Qiagen QIASymphony 0/1
 - Qiagen EZ1 Kits 2/4
 - Qiagen Manual Kits 2/7
 - Roche MagNA Pure Kits 1/8
 - Roche Manual Kits 0/2
 - Promega Maxwell 0/1
 - Promega Wizard Genomic DNA 1/1

- Elution Volume Critical
 - Eluting in < 100 µl
 - Positivity when detecting 10 genomes/sample = 100%*
 - Sample volume 0.5 – 1.0 ml
 - Eluting in ≥ 100 µl
 - Positivity when detecting 10 genomes/sample = 62.5%**

- Perform PCR in Duplicate
- Perform an IC PCR
- A Cq threshold of 43 cycles is optimal

Barnes et al. Med Mycol 2018; 56
Immunodiagnostics

- Platelia galactomannan EIA widely studied in serum & BAL
 - Reported performance continues to be variable
 - Serum sensitivity ranging from 19% - 80%
 - BAL sensitivity ranging from 43% - 90%
 - Positive predictive value highest in BAL (highest prevalence)
 - Many variables impact performance
 - Hosts (neutropenic vs. not)
 - Other drugs (antifungals, contamination)
 - Biology (colonization vs. invasion)
 - Technical (cut-off variation)
 - Recent attention to cutoffs, “false positives”, and antigen

Boch et al. Clin Microbiol Infect 2016; 22A
BAL Cut-offs

- Multiple cut-offs used: 0.5, 0.7 vs. 1.0?
 - Perhaps depends on host, and goal
 - Subject to a lot of bias: disease definitions, antifungal exposure (time) and math
- Lavage dilutions, variation in kit threshold control

BMT – 0.5
Musher JCM2004

Heme – 1.0
Maertens CID2004

Mix – 0.8
D’Haese JCM 2012

Non-neut – 0.7
Zhou JCM 2017
Consecutive patients (n=134) with BAL GM EIA to assess real-world predictive value
- 42% of BAL positive at >0.5 were falsely positive, PPV = 58%
- Is 0.5 too low?

How do we really distinguish between FP test vs. FN gold standards, or definitions that are too conservative?

Biology is vexing: airway antigen not necessarily disease
- Understanding nature of antigen critical
Immunodiagnostics

• “galactomannan” is a complex polymer (mannan & gal\textit{f} side chains)
 – Secreted in differing amounts depending on growth conditions

• Antigenic moiety = galactofuranose
 – In mammals, galactose is common but only found in the hexopyranosyl form (Gal\textit{p})
 – Galactofuranose (Galf) is found in bacteria, fungi, protozoa, starfish, sponges and green algae (and lichens)- abundant
 – Equilibrium favors Gal\textit{p}

![Diagram of galactofuranose and galactose structures]

β-Galactofuranose (galf)

- *A. fumigatus* cell wall contains many galf-glycoconjugates, including
 - Fungal-type galactomannan (GM)
 - O-glycans
 - N-glycans

galf - epitope recognition

- EB-A2 reactivity tested against galf-glycoarray
- Dimeric β5 (galf-galf) recognition a surprise
 - Terminal β5 (galf-galf)
- Potential specificity and sensitivity implications
 - Broader than previously thought but some limits on glycan recognition
- galf epitope specificity the most important driver – mAb comparisons needed
Immunodiagnostics

- Multiple LFDs simplifying detection of Ag’s in BAL
 - JF5 monoclonal reactive to “glycoprotein” released during active growth (OLM)
 - Different versions evaluated; new CE marked BAL LFD 71% sensitive; 100% specific\(^1\)
 - Large BAL study with 247 heme / BMT patients\(^2\)
 - BAL – sensitivity 82%; specificity 86% - 96% (visual vs. digital)
 - Correlation with serum GM EIA
 - Late reads – increased sensitivity, decreased specificity
 - “Galactomannan” LFD (IMMY)
 - Comparative studies
 - Non-neutropenic cohort
 - sensitivity 58 – 69%; specificity 68 – 75%\(^3\)

\(^1\) Hoenigl et al. Mycoses 2018; 61
\(^2\) Mercier et al. J Clin Microbiol; 2019: 57
\(^3\) Jenks et al., Mycoses 2019; 62
Immunodiagnostics

Comparative study with digital readouts: both with good performance

GM – higher sensitivity, more processing

JF5 – easier, lower sensitivity

Mercier et al. *ECCMID 2019*
Immunodiagnostic

- mAb476 –recognizes *Aspergillus* glycans in infected animal serum, BAL, lung homogenate *but most antigen rapidly excreted in urine*
 - Proof of concept shown with human samples after urine processing step to optimize antigen recovery¹

- LFD tested in 120 IA patients (MycoMed Tech.)²
 - Sensitive 89.5% (69-98); 92% specific (74-99)
 - Early in sequential samples from ‘possible’ cases

- Semi-quantitative ELISA developed (ASM, 2019)

- ECCMID 2019 (Tues): novel epitope specificity to include monomeric and terminal non β(1→5)-Galβf enables recognition of urinary Ag

¹Dufresne et al., *PLOS ONE*, 7: e42736, 2012
²Marr et al., Clin Infect Dis 2018
β-D-Glucan

- Activates *Limulus* amebocyte lysate
- Factor G initiates cascade. Output measured by multiple substrates in multiple kits: Wako BDG (Fujifilm Wako); Fungitec G test (Seikagaku); Fungitell (Assoc. Cape Cod); Dynamiker Fungus (Dynamiker BT); GKT-25M (Tianjin Era BT); Goldstream Fungus (Gold Mountain River Test Development)
β-D-Glucan

- Highly sensitive, yet non-specific assays
- Likely different cut-offs needed for different IFIs – none yet optimized for IA
 - Fungitell and Goldstream assay – IA with lower values
 - Dynamiker – not as much variation
- More comparisons, ROCs needed
• Exhaled VOCs
 – Unique metabolic profiles predict IA (esp. sesquiterpenes)
 • Detected by MS-GC & Enose
 – Complicated studies and outputs
 • Growth conditions change VOCs
• Fungal siderophores including triacetylfusararine C (TIAC) in urine and serum

Koo et al., Clin ID 2014; de Heer J Breath Res 2016
Skriba et al. Frontiers Microbiol 2018
Rees et al. J Breath Res 11(3) 2018
• MS – disaccharide (glycan) secreted during growth
 – Per-sample performance (blood) – less sensitive compared to BDG but more specific
 – Signals ? (trehalose)
And more....

• Next Generation Sequencing of cell-free DNA in plasma (Karius)
• Interpreting fungal markers in context of host inflammatory markers (Hoenigl)
• New technologies...
Historical Prevention Paradigm

Empirical

Pre-emptive

Clinical symptoms/signs
Antigenemia / PCR

Requires belief in negative tests

Granulocytes

Day

ESCMID eLibrary © by author
The Math of (Negative) Tests

• Negative predictive value
 – NPV is the probability a negative test is correct – either stop a drug (or don’t start it)
• A good test might have sensitivity & specificity = 85%
 – If likelihood is ~ 10% (low risk), NPV is ≥ 98% (wrong 1 in 50)
 – If likelihood is ~ 33% (medium risk), NPV is ≥ 92% (wrong 1 in 11)
• To get to an NPV of ≥ 98% at likelihood of 33%...
 – You need sensitivity and specificity of 96%
 – We don’t have that with any test

We also need to think about risks differently with screening (10%) vs. suspected disease (33%) → NPV vs. PPV
Separate tests according to need
Tailoring diagnostics

Screening assays: High NPV
Easy, convenient: think fecal occult blood
Broad, sensitive, non-invasive predictor of risk

Diagnostic assays: High PPV
More invasive: think colonoscopy
Combined assays specific to pathogen

Granulocytes

Prophylaxis?

Day

10
1
0.1
-14 -7 0 7 14 21 28 35 42 49 56 63
Conclusions

• Much learned about old tests
• New assays use easier technology
 – Need characterized Abs to understand biology
• New sample systems to enable screening (urine, breath)
• Need to think about NPV vs. PPV and combine tests when disease is highly likely
Thank you