NEUTROPENIC FEVER: NO PATHOGENS BUT STILL ANTIBIOTICS?

Monica A. Slavin
Peter MacCallum Cancer Centre
Royal Melbourne Hospital
National Centre for Infections in Cancer
WHICH
GHOST INFECTION
do you have?
DISCLOSURES

Educational and research grants from MSD, Gilead Sciences, Pfizer.
FEVER AND NEUTROPENIA (FN)

<table>
<thead>
<tr>
<th>Population</th>
<th>Micro Dx</th>
<th>Bacteria</th>
<th>Fungal</th>
<th>Viral</th>
<th>Mycobact</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBT</td>
<td>79%</td>
<td>47%</td>
<td>11%</td>
<td>40%</td>
<td>2</td>
<td>Safdar et al, Medicine 2007</td>
</tr>
<tr>
<td>Allo HCT</td>
<td>96%</td>
<td>71%</td>
<td>5%</td>
<td>4%</td>
<td>0</td>
<td>Martin-Pena A et al, Clin Transplant 2011</td>
</tr>
<tr>
<td>Auto HCT</td>
<td>75%</td>
<td>36%</td>
<td>3.5%</td>
<td>15.5%</td>
<td>0</td>
<td>Marchesi F et al, Int J Molec Sci 2019</td>
</tr>
<tr>
<td>Auto HCT</td>
<td>48%</td>
<td>46%</td>
<td>0%</td>
<td>4%</td>
<td>0</td>
<td>Gil L et al, Infection 2007</td>
</tr>
<tr>
<td>Adult HM</td>
<td>63%</td>
<td>33%</td>
<td>0%</td>
<td>30%</td>
<td>0</td>
<td>Ohrmalm L et al, PLOSone 2012</td>
</tr>
<tr>
<td>Adult ALL</td>
<td>70%</td>
<td>23%</td>
<td>4.3%</td>
<td>1%</td>
<td>0</td>
<td>Di Blasi R et al, Ann Haematol 2018</td>
</tr>
<tr>
<td>Child cancer</td>
<td>51%</td>
<td>6%</td>
<td>0%</td>
<td>41%</td>
<td>0</td>
<td>Soderman M et al, PLOSone 2016</td>
</tr>
<tr>
<td>Child cancer</td>
<td>25%</td>
<td>50%</td>
<td>34%</td>
<td>14%</td>
<td>0</td>
<td>Hakim et al, J Ped Hematol Oncol 2009</td>
</tr>
</tbody>
</table>
FEVER AND NEUTROPENIA BUT NO MICROBIOLOGY

Median duration of fever: 7-9 days HCT

GIT Translocation

Organisms not treated by routine antibiotics

- **Bacterial:** Stenotrophomonas, Burkholderia, Elizabethkingia, Nocardia, Rhodococcus, Legionella, Mycoplasma, Mycobacteria, Listeria
- **Fungal:** Wide spectrum including *Cryptococcus*
- **Viral:** in patients not routinely tested
- **Parasite:** *Strongyloides, Toxoplasma*

GUT TRANSLOCATION HAEMATOLOGIC MALIGNANCY (HM)

94 patients with 176 episodes fever

Bacterial infection in 59.6%

Blood samples days 0, 1, 2 and 6 after fever
 • Endotoxin in 40% regardless aetiology
 • TNF-α in 61%
 • IL-6 in 94%

Initial TNF-α and IL-6 levels were significantly higher in patients with Gram-negative bacteraemia than other causes of fever \((P < 0.001)\)

Failing mucosal barrier allows endogenous bacterial products/bacteria to reach the circulation

Microbial Translocation Contribute to Febrile Episodes in Adults with Chemotherapy-Induced Neutropenia

Michelle Wong1, Bablia Barqashi2, Lars Öhrmalm1, Thomas Tolfvenstam1, Piotr Nowak2,3

1 Department of Medicine, Söders, Infectious Disease Unit, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden, 2 Department of Laboratory medicine, Division of Microbiology, Karolinska Institute, Huddinge, Sweden, 3 Department of Medicine, Huddinge, Infectious Disease Unit, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden

Endotoxin levels

A

n=42

Endotoxin concentration (pg/ml)

n=103

n=37

n=28

n=38

* \(p<0.05 \)\n
*** \(p<0.0001 \)

B

Endotoxin concentration (pg/ml)

** \(p<0.05 \)\n
*** \(p<0.0001 \)

ESCMID eLibrary

© by author

Wong M et al PLOS One 2013:8:E68056
16 S rRNA BLOOD TESTING

Paediatric patients with fever and neutropenia (n=111), 16S rRNA gene amplification and sequencing

Positive blood cultures: 17
 • Bacterial DNA detected in 9/11 blood culture-positive episodes identical to the cultured isolates.

Negative blood cultures: 94
 • Bacterial DNA in 20 episodes (21 bacterial sequences)

18/20 in patients on antibiotics
 • Species by partial 16S rRNA gene sequencing:
 • Pseudomonas spp. (n = 6), Acinetobacter spp. (n = 5)
 • Escherichia spp. (n = 3); Moraxella spp. (n = 3)
 • Staphylococcus spp. (n = 2); Neisseria spp. (n = 1); Bacillus spp. (n = 1)
OPEN

Metagenomic analysis of bloodstream infections in patients with acute leukemia and therapy-induced neutropenia

P. Gyarmati1,2, C. Kjellander3, C. Aust4, Y. Song5, L. Öhrmalm6 & C. G. Giske1,2

Received: 07 January 2016
Accepted: 08 March 2016
Published: 21 March 2016
METAGENOMIC SEQUENCING

9 patients with acute leukemia and suspected BSI at 3 time points:

- At onset fever and neutropenia before antibiotics, persistent fever, 5-7 days of antibiotics

Shotgun metagenomic sequencing of bacterial, fungal, viral pathogens and antimicrobial resistance genes

Average 33.5 million reads/sample. Decreased white blood cell counts associated with the presence of microbial DNA, and inversely proportional to the number of sequencing reads

METAGENOMICS

Significant reduction in bacteria after antibiotic treatment

Bacteria: *Propionibacterium acnes*, *Corynebacterium* spp, *Staphylococcus* spp, *Neisseria* spp, *Dolosigranulum* pigrim

Viral: mostly bacteriophages, Torque Teno Virus, Merkel cell PV, hepatitis C, HHV6

Fungal: *Fusarium oxysporum* (all time points), *Aspergillus*, *Malassezia*

TIMING AND FUNGAL ORGANISMS

FUNGI

- **Aspergillus species**: 9/27
- **Fusarium oxysporum**: 3/27
- **Malessezia globosa**: 2/9
- **Botryotinia fuckeliana**: 1/9
- **Melampsora larici-populina**: 1/7
- **Coprinopsis cinerea**: 4/7

All samples: 13/27

Fever onset: 3/9

Persistent fever: 5/7

Follow up: 5/11

CASE ONE

44-year-old with refractory AML

- Prior Azacitidine, FLAG
- Complicated by *E-coli* septicaemia and liver abscess on ciprofloxacin 500mg BD, abscess decreasing
- Chronically neutropenic: ANC 0.0 x 10⁹/L to 0.8 x 10⁹/L for 4 months

7+3 re-induction chemotherapy

- Neutropenic fevers on day 3: meropenem (penicillin allergy)
- Persistent fever and pleuritic chest pain day 10 (still neutropenic)

CTPA performed and blood cultures flagged positive 2 days later
CASE ONE

Stenotrophomonas maltophilia

IV cotrimoxazole 15mg/kg/day and moxifloxacin 400mg daily. Hickman line was removed

Prophylactic posaconazole changed to ambisome 5mg/kg daily based on radiology

Progressive sepsis day 15. ICU admission and bronchoscopy. Bronchial washings and multiple tracheal aspirates

- All cultured *Stenotrophomonas maltophilia*
- No positive fungal culture, Aspergillus GM or aspergillus PCR

Bacteraemic for 7 days. He continued to deteriorate, and was palliated

GRAM NEGATIVE INFECTION

Non-fermenting environmental organisms

Intrinsic and acquired antibiotic resistance:

- Intrinsic β-lactamases
- Efflux pump systems
- Enzymatic modifications
- Changes in the outer membrane
- Target site modification

Abbott IJ and Peleg AY. Semin Respir Crit Care Med 2015;36:99–110
Antimicrobial Resistance

<table>
<thead>
<tr>
<th></th>
<th>S. maltophilia</th>
<th>B. cepacia complex</th>
<th>A. xylosoxidans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EUCAST</td>
<td>CLSI</td>
<td>EUCAST</td>
</tr>
<tr>
<td>Amoxicillin-clavulanate</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Ticarcillin–clavulanate</td>
<td>–</td>
<td>–</td>
<td>R</td>
</tr>
<tr>
<td>Piperacillin–tazobactam</td>
<td>R</td>
<td>R</td>
<td>–</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>R</td>
<td>R</td>
<td>–</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>R</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cefepime</td>
<td>R</td>
<td>–</td>
<td>n/r</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>R</td>
<td>R</td>
<td>n/r</td>
</tr>
<tr>
<td>Ertapenem</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Imipenem</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Meropenem</td>
<td>R</td>
<td>R</td>
<td>–</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>–</td>
<td>n/r</td>
<td>R</td>
</tr>
<tr>
<td>Aminoglycoside</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Trimethoprim–sulfamethoxazole</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Fosfomycin</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Minocycline/Tigecycline</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Colistin</td>
<td>–</td>
<td>–</td>
<td>R</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Abbott IJ and Peleg AY. Semin Respir Crit Care Med 2015;36:99–110
STENOTROPHOMONAS BSI IN CANCER: CATHETER RELATED VS OTHER

<table>
<thead>
<tr>
<th>Condition</th>
<th>Catheter-related n=53</th>
<th>Other n=47</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute leukemia</td>
<td>19%</td>
<td>60%</td>
<td><0.001</td>
</tr>
<tr>
<td>Solid tumour</td>
<td>38%</td>
<td>17%</td>
<td>0.02</td>
</tr>
<tr>
<td>Neutropenic at onset BSI</td>
<td>23%</td>
<td>81%</td>
<td><0.001</td>
</tr>
<tr>
<td>ICU stay during BSI</td>
<td>6%</td>
<td>60%</td>
<td><0.001</td>
</tr>
<tr>
<td>Mechanical ventilation at onset</td>
<td>4%</td>
<td>47%</td>
<td><0.001</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>11%</td>
<td>85%</td>
<td><0.001</td>
</tr>
<tr>
<td>Breakthrough bacteremia</td>
<td>36%</td>
<td>83%</td>
<td><0.001</td>
</tr>
<tr>
<td>Ciprofloxacin resistant</td>
<td>17%</td>
<td>51%</td>
<td><0.001</td>
</tr>
</tbody>
</table>

BSI: blood stream infection; ICU: intensive care unit

OUTCOME STENOTROPHOMONAS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definite CR-BSI (n = 53) (%)</th>
<th>Secondary BSI (n = 47) (%)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall response</td>
<td>47 (89)</td>
<td>14 (30)</td>
<td><.001</td>
</tr>
<tr>
<td>Response among patients in whom catheters were removed</td>
<td>39/41 (95)</td>
<td>9/16 (56)</td>
<td>.001</td>
</tr>
<tr>
<td>Treatment failure</td>
<td>6 (11)</td>
<td>33 (70)</td>
<td><.001</td>
</tr>
<tr>
<td>Death</td>
<td>6 (11)</td>
<td>30 (64)</td>
<td><.001</td>
</tr>
<tr>
<td>Death attributed to S. maltophilia bacteremia</td>
<td>6 (11)</td>
<td>27 (57)</td>
<td><.001</td>
</tr>
</tbody>
</table>
CASE 3

59-year-old undergoing unrelated donor HCT

JAK2 positive myelofibrosis, prior ruxolitinib

Persistent fever, pancytopenia, hepatitis day 12

Trans-jugular liver biopsy: haemorrhagic shock and oliguric renal failure

Insertion of a tunnelled dialysis catheter on day 26

Persistent fever and neutropenia
CASE 3: *M. ABSCESSUS COMPLEX*

M. abscessus/cheloneae MALDI-TOF day 30
ITS sequencing: *M. abscessus complex*
Empiric: amikacin, cefoxitin, imipenem, clarithromycin
Debridement of catheter tract after neutrophil recovery
Susceptibility testing by microbroth dilution

Susceptible: Amikacin, Tigecycline
Intermediate: Cefoxitin, Imipenem
Resistant: trimethoprim/sulfamethoxazole, ciprofloxacin, moxifloxacin, doxycycline linezolid.
Inducible clarithromycin resistance. Mediated by mutations in *erm* gene in *M. abscessus* subsp. *abscessus* and subsp. *bolletii* but not in *M. abscessus* subsp. *massiliense*
RAPIDLY GROWING MYCOBACTERIA BSI

116 patients with cancer

- CVC in 111 (96%) patients; CVC was removed from 87 (79%) patients
- Eighty-five patients (73%) also received antibiotics
- \textit{M. chelonae} mitral valve endocarditis. Median treatment 4-6 weeks

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All Patients, No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y, median (range)</td>
<td>52 (10–81)</td>
</tr>
<tr>
<td>Sex, male:female ratio</td>
<td>67.49 (58:42)</td>
</tr>
<tr>
<td>Underlying cancer</td>
<td></td>
</tr>
<tr>
<td>Hematologic</td>
<td>70 (60)</td>
</tr>
<tr>
<td>Solid</td>
<td>46 (40)</td>
</tr>
<tr>
<td>HSCT</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>33 (28)</td>
</tr>
<tr>
<td>Autologous</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Allogeneic</td>
<td>29 (25)</td>
</tr>
<tr>
<td>GVHD</td>
<td>19 (16)</td>
</tr>
<tr>
<td>HIV infection</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Chemotherapy in month before bacteremia</td>
<td>84 (72)</td>
</tr>
<tr>
<td>Corticosteroids in month before bacteremia</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>104 (90)</td>
</tr>
<tr>
<td>>600 mg (30-day cumulative dose of prednisone equivalent)</td>
<td>22 (21)</td>
</tr>
<tr>
<td><600 mg (30-day cumulative dose of prednisone equivalent)</td>
<td>82 (79)</td>
</tr>
<tr>
<td>Radiation therapy in month before bacteremia</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Surgery in month before bacteremia</td>
<td>5 (4)</td>
</tr>
<tr>
<td>Hemodialysis at time of bacteremia</td>
<td>4 (3)</td>
</tr>
<tr>
<td>TPN at time of bacteremia</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Neutropenia at time of bacteremia</td>
<td>23 (20)</td>
</tr>
<tr>
<td>Fever at time of bacteremia</td>
<td>76 (66)</td>
</tr>
<tr>
<td>Hypothermia at time of bacteremia</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Central venous catheter</td>
<td>111 (95)</td>
</tr>
</tbody>
</table>
159 neutropenic patients with haematological malignancy

35/159 (22%) ≥ one virus in blood

On multivariate analysis associations with virus in blood
- Fever
- CLL
- Not autologous SCT
- Steroids
- Lower CD4 (median 38)
- Steroids
- Monoclonal Antibody

Virus NPA: 18%

Overall number with viral detection: 35%

Ohrmalm L et al PLOS one 2012:7:e36543
CMV REACTIVATION IN AUTOLOGOUS STEM CELL TRANSPLANT

Up to 41% CMV seropositive patients with prospective monitoring
Up to 12% with clinically driven diagnostic strategy

- Risks
 CD34+ selected autografts, total body irradiation, prior Alemtuzumab, Fludarabine, Bortezomib

- Possible risks
 Prior Rituximab, T-cell lymphomas, pretransplant HBcAb, end organ disease 9.2% (lymphoma, myeloma),

In non-transplant patients 2-67%

- Putative risk factors
 High-dose steroids, advanced disease, poor performance status, Alemtuzumab, Fludarabine, Bortezomib, Rituximab

STRONGYLOIDES

Association with HTLV-1 infection and adult T cell leukaemia

- Small survey fever and neutropenia after chemotherapy in Australia
- 2/6 indigenous patients had positive stool cultures

<table>
<thead>
<tr>
<th>HTLV-1</th>
<th>Sensitivity</th>
<th>Cases n/N</th>
<th>Controls n/N</th>
<th>OR (95% BC)</th>
<th>OR (95% BC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nero FA et al. (1986)</td>
<td>High</td>
<td>22/84</td>
<td>20/100</td>
<td>1.44 (0.73 - 2.79)</td>
<td></td>
</tr>
<tr>
<td>Chiff JP et al. (2000)</td>
<td>Moderate</td>
<td>11/91</td>
<td>1/93</td>
<td>2.92 (1.08 - 11.9)</td>
<td></td>
</tr>
<tr>
<td>Couto et al. (2004)</td>
<td>High</td>
<td>27/81</td>
<td>33/253</td>
<td>4.95 (2.47 - 11.0)</td>
<td></td>
</tr>
<tr>
<td>Einsiedel L et al. (2010)</td>
<td>High</td>
<td>37/78</td>
<td>23/967</td>
<td>1.92 (1.12 - 3.32)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>105/220</td>
<td>277/2288</td>
<td>2.48 (0.70 - 9.03)</td>
<td></td>
</tr>
</tbody>
</table>

Immigrants and refugees
CASE 5

57yo IgG kappa myeloma
Induction: lenalidomide, dexamethasone
Autologous HCT and maintenance lenalidomide
Relapse: carfilzomib, thalidomide & dexamethasone trial

Post-cycle 5 ...ANC=0.4, Temp 38.5
Increasing lethargy and malaise
Piperacillin-tazobactam and discharge on amoxycillin-clavulanate for presumed pneumonia
FACIAL RASH ALSO NOTED

Recalled when blood cultures flagged positive with a yeast
CASE 5

Histology facial biopsy organisms consistent with Cryptococcus

Lumbar Puncture
- Opening pressure 20cm
- Protein 1.37 g/L
- Glucose <0.3 mmol/L
- Culture: Cryptococcus neoformans
- CrAg: positive, titre > 1:2560
- Serum CrAg positive, titre: 1:20480
CRYPTOCOCCOSIS

- Increased risk of cryptococcus in myeloma and other haematological malignancies including CLL well described

- Progressive/end stage disease with significant effect from both myeloma and multiple lines of treatment

- Proteosome inhibitors (Carfilzomib, Bortezomib)
 - Increased risk of viral infections due to T cell depletion
 - Increased rate of herpes zoster & influenza
 - High rates of pneumonia in clinical trials
 - Not recognised to increase risk of cryptococcosis

BRUTON’S TYROSINE KINASE INHIBITOR AND INVASIVE FUNGAL INFECTION (IFI)

IFI in CLL/lymphoma with ibrutinib
- PJP, Cryptococcosis, mould infection early after starting ibrutinib
- Aggressive, unusual course, disseminated

Mouse model
- More severe IA with BTK knockout

Human monocytes and aspergillus
- Ibrutinib impairs in activation, neutrophil attraction and TNF production

IMAGING IN NEUTROPENIC FEVER

- Patients frequently do not have localising signs
- Reliant on microbiology and imaging to localise infection
- Conventional CT scanning is not “high yield”
 - 52% sensitivity, 43% specificity
 - No functional component
 - Issues with differentiating cancer from infection

Gafter-Gvili A et al. Leukemia research. 2013
PET AND INVASIVE FUNGAL INFECTION

Retrospective review of 30 cases of IFI on FDG-PET/CT
- Hepatosplenic candidiasis - not evident on CT
- Invasive pulmonary aspergillosis - not evident on CT

Case-control study in 113 with NF
- Less antifungals started
- More antifungals ceased
- Cost savings of $7445 - $14,455 AUD (2012) per patient

FDG-avidity in liver pre and post treatment for hepatosplenic candidiasis

Allogeneic or Autologous Transplants AML/ALL

Fever and neutropenia continues at 72 hours or recurs after afebrile Blood PCR and blood culture

Randomised to FDG-PET/CT or standard CT arm

Yield of multiplex blood PCR compared to blood culture

IMAGING RESULTS IN REAL TIME
Impact on outcomes
- Proportion with diagnosis
- Change in management
- Proportion on antifungals
- Cost of care
- ICU admission
- Length of hospital stay
CONCLUSION

“...for high-risk patients with persistent fever and neutropenia, continued antibiotic therapy along with empirical antifungal therapy starting 4 to 7 days after initiation of antibiotic therapy is recommended.”

- Continue antibiotics
- Look for pathogens not covered by antibiotics including viruses
- Investigate: CT scan, PET/CT scan, bronchoscopy
- Multiplex PCR
- Promise of metagenomics
21st ICHS Symposium on
Infections in the Immunocompromised Host

7–9 June, 2020
Melbourne, Australia

www.ichs2020.com