P2387 Are beta-lactams a better choice for oxacillin-susceptible mecA-positive Staphylococcus aureus treatment?

Marcia Perugini*1, Felipe Crepaldi Duarte1, Tiago Danelli1, Alexandre Casonatto1, Jaqueline Dario Capobiango2, Geórgia Peluci Durante1, Fernanda Carolina Ribeiro Godoy1, Alisson Santana Da Silva1, Thilara Alessandra De Oliveira1, Raquel Soares Da Silva1, Luis Felipe Perugini1, Déborah Rossane Santana Costa De Souza1, Fabricio Seidy Ribeiro Inoue1, Eliandro Reis Tavares3, Lucy Megumi Yamauchi3, Eliana Carolina Vespero1, Sueli Fumie Yamada-Ogatta3, Marcia Regina Eches Perugini1

1 Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina, Brazil, 2 Department of Pediatrics and Pediatric Surgery, State University of Londrina, Londrina, Brazil, 3 Department of Microbiology, State University of Londrina, Londrina, Brazil

Background: Infections due to methicillin-susceptible Staphylococcus aureus (MSSA) represent a significant burden to the health care system. β-lactam are considered the first line for treatment of infections caused by MSSA. However, oxacillin-sensible-mecA-positive S. aureus (mecA-positive-MSSA) are being reported with increasing frequency around the world. In this context, the present study evaluated clinical characteristics, treatment and the impact in patient’s outcomes of mecA-positive-MSSA and compared to MRSA in Brazil south.

Materials/methods: This study was a retrospective analysis of 41 S. aureus collected from patients with pneumonia and bacteremia at a university hospital, during 2015-2016. mecA-MSSA and MRSA was defined by automated susceptibility testing (Vitek 2®-bioMérieux, Durham, NC) and detectable mecA by modified polymerase chain reaction (PCR). Clinical characteristics, antimicrobial treatment and outcomes were evaluated through an active search in medical records.

Results: Forty-one patients, with bacteremia or pneumonia were selected but, three of them were excluded, based on insufficient follow-up. Vancomycin was prescribed for 85% of MRSA and 73% for OS-MRSA. There was an average of 2 to 3 antimicrobial exchanges per treatment. The average therapy time needed to secure the effective eradication of OS-MRSA was about 25 days. There were observer 12 cases of antimicrobial discontinuation among OS-MRSA, 2 of them succeeded and 10 evolved a worsening clinical course, of with 3 showed an improve after the use of broad spectrum antibiotics. For OS-MRSA therapy was replaced by oxacillin for 6 patients and 5 (83%) of these progressed to death-30 days, while linezolid replacement, performed for 4 patients, was successful in 3 (75%) of them. MRSA therapy was performed with vancomycin for 19 (85%) patients, nine (41%) of them evolved to death by sepsis.

Conclusions: All patients in the study received empirical vancomycin therapy in both groups, but for MRSA these was the most used antibiotic. Patients with mecA-MSSA treated with β-lactam were more likely to experience clinical failure, unlike those who received broad spectrum antibiotics or that use β-lactam associated with others anti-staphylococcal antimicrobials. Our data suggest that exchanges vancomycin for β-lactam monotherapy for mecA-MSSA may place patients at risk for clinical failure.