O0930 Ceftazidime-avibactam activity against a challenge set of carbapenem-resistant Gram-negative clinical isolates and evaluation of resistance mechanisms

Rodrigo E. Mendes*1, Timothy Doyle1, Cory Hubler1, Robert Flamm1, Mariana Castanheira1, Helio S. Sader1

1JMI Laboratories, North Liberty, United States

Background: Ceftazidime-avibactam (CAZ-AVI) is an important addition to the armamentarium against multidrug-resistant organisms. This study evaluated CAZ-AVI activity against carbapenem-resistant Enterobacteriaceae (CRE) and resistance mechanisms among non-metallo-β-lactamase (MBL) producers.

Materials/methods: 8,165 Enterobacteriaceae were recovered from ex-US during the 2016 SENTRY Program and 285 (3.5%) were categorized as CRE. Among CRE, 15 (14 Klebsiella pneumoniae and 1 Enterobacter aerogenes) showed CAZ-AVI MICs of 2–8 mg/L, did not harbor MBL, and were selected for further investigation. MICs were determined in triplicate in the presence/absence of phenylalanine-arginyl β-naphthylamide (PAβN) and polymyxin B nonapeptide (PMBN). In addition to screening of β-lactamase genes, genome sequences were investigated for the integrity of porin genes and MLST. qRT-PCR assays were conducted to determine expression of porins and acrA or ampC genes.

Results: Overall, CAZ-AVI (99.2% susceptible) had MIC50 and MIC90 values of 0.12 mg/L and 0.5 mg/L respectively. These values were similar against Asia-Pacific, European, Latin American, and North American (Canada) isolates. CAZ-AVI inhibited 78.6% (224/285) of all CRE and 100% (226/226) of non-MBL producers at the EUCAST breakpoint (≤8 mg/L). Among the carbapenemase producers (94.2%; 243/285), the most common gene detected was blaKPC at 50.6% (61.8% blaKPC-3 and 37.4% blaKPC-2), followed by blaOXA-48-like (24.7%) and blaNDM (20.6%). The blaNDM gene along with blaOXA-48-like were detected in 6 isolates (2.5%). Seven MLSTs were observed among the selected 14 K. pneumoniae and 56.3% belonged to clonal complex 258. Clonality was observed among K. pneumoniae within a Brazilian and an Italian site. Adding PAβN did not decrease CAZ-AVI MICs, but PMBN significantly decreased the combination MICs to 0.03–0.25 mg/L, except for 2 isolates (MIC, 0.5–1 mg/L). All selected 15 isolates had a premature stop codon at OmpK35 (K. pneumoniae) or at OmpC (E. aerogenes). Expression of acrA among K. pneumoniae were comparable to expression of a susceptible control, while E. aerogenes overexpressed ampC.

Conclusions: The blaKPC gene remained the main carbapenemase observed among ex-US CRE, while blaNDM and blaOXA-48-like occurrences were similar. Generally, elevated CAZ-AVI MIC values (2–8 mg/L) seem to be associated with lack of OmpK35 or OmpC.