Population pharmacokinetics of Murepavadin (POL7080) and Monte Carlo simulations to develop clinical dosing regimen, including the renally impaired.

Brenda C.M. de Winter1, Anouk E. Muller2,3, Glenn E. Dale4, Achim Wach4, Johan W. Mouton3

1Dept of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, the Netherlands
2Dept of clinical microbiology, Medical Centre Haaglanden, The Hague, the Netherlands
3Dept of Medical Microbiology and Infectious Diseases, Erasmus Medical Centre, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
4Polyphor Ltd, Allschwil, Switzerland
Indirect disclosures

- Wockhardt
- Basilea
- Eumedica
- Polyphor
- Nordic pharma
Background Murepavadin

• New peptidomimetic antibiotic
• Specifically aimed at *Pseudomonas aeruginosa*, including multidrug resistant strains
• Mechanism of action: interaction with LptD, a target critical in the outer membrane biogenesis.
• Indication pneumonia

• Aim study: describe the pharmacokinetics and perform MCS to design dosing regimen.
Data for population PK analysis

• 211 subjects
• 2656 concentration-time observations
• Doses ranged from 0.05 mg/kg up to 10 mg/kg

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Median</th>
<th>range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender (% of the group)</td>
<td>79%</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>44</td>
<td>18 – 81</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>79</td>
<td>39 – 110</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>173</td>
<td>149 – 196</td>
</tr>
<tr>
<td>Body Mass Index (kg/m²)</td>
<td>26</td>
<td>16 – 49</td>
</tr>
<tr>
<td>Body surface area (m²)</td>
<td>1.9</td>
<td>1.3 – 2.35</td>
</tr>
<tr>
<td>Creatinine concentration (umol/L)</td>
<td>82</td>
<td>34 - 368</td>
</tr>
<tr>
<td>Cleatinine clearance (mL/min)</td>
<td>112</td>
<td>15 – 244</td>
</tr>
<tr>
<td>VAP (number)</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>
Methods

- Population pharmacokinetic model
 - NONMEM
 - Rstudio, Xpose, Pirana
 - 1-, 2-, 3 compartment models
 - Covariate model
 - Validation of the final model: NPDE (normalised prediction distribution errors)

- Monte Carlo simulations
 - NONMEM
 - Used the popPK model without covariates (general) and with covariates for adjustments renal impairment
 - 1000 simulations per regimen
 - Total concentrations
 - PK/PD target: AUC/MIC >208
Results population PK

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Structural model Mean</th>
<th>Covariate model Mean (RSE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance (L/h)</td>
<td>5.89</td>
<td>7.03 (2%)</td>
</tr>
<tr>
<td>TVCL (L/h)</td>
<td>40.2</td>
<td>0.714 (5%)</td>
</tr>
<tr>
<td>A (influence of CRCL)</td>
<td></td>
<td>1.71 (17%)</td>
</tr>
<tr>
<td>B (influence of height)</td>
<td></td>
<td>21.4 (7%)</td>
</tr>
<tr>
<td>IPV (%)</td>
<td>5.89</td>
<td>0.0.714 (5%)</td>
</tr>
<tr>
<td>Central volume of distribution (L)</td>
<td>13.6</td>
<td>21.5 (14%)</td>
</tr>
<tr>
<td>IPV (%)</td>
<td>21.1</td>
<td>21.5 (14%)</td>
</tr>
<tr>
<td>Intercompartmental clearance (L/h)</td>
<td>5.15</td>
<td>4.66 (3%)</td>
</tr>
<tr>
<td>TVQ</td>
<td>48.3</td>
<td>2.64 (12%)</td>
</tr>
<tr>
<td>C (influence of VAP)</td>
<td></td>
<td>27.1 (14%)</td>
</tr>
<tr>
<td>IPV (%)</td>
<td>5.15</td>
<td>2.64 (12%)</td>
</tr>
<tr>
<td>Peripheral volume of distribution (L)</td>
<td>22.4</td>
<td>24.0 (3%)</td>
</tr>
<tr>
<td>TVVp</td>
<td>48.0</td>
<td>0.663 (11%)</td>
</tr>
<tr>
<td>D (influence of age)</td>
<td></td>
<td>26.8 (9%)</td>
</tr>
<tr>
<td>IPV (%)</td>
<td>22.4</td>
<td>24.0 (3%)</td>
</tr>
<tr>
<td>Residual error</td>
<td>0.181</td>
<td>0.182 (6%)</td>
</tr>
</tbody>
</table>
Covariate model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Covariate model Mean (RSE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance (L/h)</td>
<td>7.03 (2%)</td>
</tr>
<tr>
<td>TVCL (L/h)</td>
<td>0.714 (5%)</td>
</tr>
<tr>
<td>A (influence of CrCL)</td>
<td>1.71 (17%)</td>
</tr>
<tr>
<td>B (influence of height)</td>
<td>21.4 (7%)</td>
</tr>
<tr>
<td>IPV (%)</td>
<td></td>
</tr>
<tr>
<td>Central volume of distribution (L)</td>
<td>13.6 (2%)</td>
</tr>
<tr>
<td>IPV (%)</td>
<td>21.5 (14%)</td>
</tr>
<tr>
<td>Intercompartmental clearance (L/h)</td>
<td>4.66 (3%)</td>
</tr>
<tr>
<td>TVQ</td>
<td>2.64 (12%)</td>
</tr>
<tr>
<td>C (influence of VAP)</td>
<td>27.1 (14%)</td>
</tr>
<tr>
<td>IPV (%)</td>
<td></td>
</tr>
<tr>
<td>Peripheral volume of distribution (L)</td>
<td>24 (3%)</td>
</tr>
<tr>
<td>TVVp</td>
<td>0.663 (11%)</td>
</tr>
<tr>
<td>D (influence of age)</td>
<td>26.8 (9%)</td>
</tr>
<tr>
<td>IPV (%)</td>
<td></td>
</tr>
<tr>
<td>Residual error</td>
<td>0.182 (6%)</td>
</tr>
</tbody>
</table>

Results
Validation of the PK model

Results

Goodness-of-fit plots

No systematic errors indicating a good model fit

Normalised prediction distribution errors (npde)
Methods

• Population pharmacokinetic model
 • NONMEM
 • Rstudio, Xpose, Pirana
 • 1-, 2-, 3 compartment models
 • Covariate model
 • Validation of the final model: NPDE (normalised prediction distribution errors)

• Monte Carlo simulations
 • NONMEM
 • Used the popPK model without covariates (general) and with covariates for adjustments renal impairment
 • 1000 simulations per regimen
 • Total concentrations
 • PK/PD target: AUC/MIC >208
 • Target MIC 0.25 mg/L
 • Duration of infusion 2hours
MCS

Results

Dose: 100 mg tid

Dose: 150 mg tid

Dose: 200 mg tid

Dose: 250 mg tid
Target attainment with normal renal function

<table>
<thead>
<tr>
<th>MIC</th>
<th>0.125 mg/mL</th>
<th>0.25 mg/mL</th>
<th>0.5 mg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>26</td>
<td>52</td>
<td>104</td>
</tr>
<tr>
<td>Target attainment for dose regimen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100mg tid</td>
<td>95.5%</td>
<td>50.6%</td>
<td>3.1%</td>
</tr>
<tr>
<td>150mg tid</td>
<td>99.6%</td>
<td>81.0%</td>
<td>21.7%</td>
</tr>
<tr>
<td>200mg tid</td>
<td>100%</td>
<td>94.2%</td>
<td>50.6%</td>
</tr>
<tr>
<td>250mg tid</td>
<td>100%</td>
<td>98.8%</td>
<td>69.9%</td>
</tr>
</tbody>
</table>
Target attainment in renally impaired individuals

<table>
<thead>
<tr>
<th>Creatinine clearance</th>
<th>120 mL/min</th>
<th>70 mL/min</th>
<th>30 mL/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC=0.25 mg/mL (AUC≥52)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100mg tid</td>
<td>18.9%</td>
<td>81.7%</td>
<td>100%</td>
</tr>
<tr>
<td>150mg tid</td>
<td>82.7%</td>
<td>99.6%</td>
<td>100%</td>
</tr>
<tr>
<td>200mg tid</td>
<td>99.3%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>250mg tid</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>MIC=0.5 mg/mL (AUC≥104)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100mg tid</td>
<td>0%</td>
<td>0.9%</td>
<td>67.4%</td>
</tr>
<tr>
<td>150mg tid</td>
<td>1.4%</td>
<td>32.5%</td>
<td>98.7%</td>
</tr>
<tr>
<td>200mg tid</td>
<td>17.5%</td>
<td>79.8%</td>
<td>100%</td>
</tr>
<tr>
<td>250mg tid</td>
<td>53.9%</td>
<td>97.2%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Conclusions

• Population pharmacokinetics can be described adequately
• Standard dosing regimen: 250 mg tid Murepavadin if ECOFF is 0.25 mg/L
• MCS indicates dosing regimen:
 • For an MIC of 0.25 mg/L and Target Attainment Rate of 99%
 • For a creatinine clearance of 120 ml/min: 200 mg tid
 • For a creatinine clearance of 70 ml/min: 150 mg tid
 • For a creatinine clearance of 30 ml/min: 100 mg tid
Acknowledgment

ErasmusMC, Rotterdam, the Netherlands:
• Brenda de Winter
• Johan Mouton

Polyphor Ltd, Allschwil, Switzerland
• Glenn Dale
• Achim Wach