Dissemination of hospital-adapted lineages of vancomycin-resistant *Enterococcus faecium* in wastewater

Theo Gouliouris
University of Cambridge, Department of Medicine
ECCMID 2017
Importance of *Enterococcus faecium* as a human pathogen

- *E. faecium*: Gut commensal of humans and animals
- Indicator organism of faecal contamination
- Increasingly important cause of healthcare associated infections over last 30 years
- Emergence of hospital-associated multidrug resistant lineages (CC17)
 - intrinsic ampicillin and quinolone resistance
 - horizontally acquired vancomycin resistance as a transposon usually on a plasmid
- Vancomycin-resistant *E. faecium* (VREfm) classified as a serious antibiotic resistance threat by CDC and WHO

Lebreton et al, MBio 2013
Aims

• Cross sectional study investigating the prevalence of hospital-associated lineages of *E. faecium* and vancomycin resistance in wastewater treatment plants across the East of England

• Phylogenetic analysis comparing wastewater and bacteraemia isolates from the same region
Sampling

20 wastewater treatment plants sampled in 2014-5
-10 plants (blue) located downstream of hospitals (squares)
-10 plants (orange) unrelated to acute hospitals

Wastewater collected from Cambridge University Hospital sewer on 4 occasions (2014-5) (triangle)

Bacteraemia isolates from Cambridge University Hospital (2014-6, n=23) and from the East of England (2010-2012, n=164) (red dots)
Wastewater treatment

- Raw wastewater
- Preliminary treatment (large solids screening)
- Primary treatment
- Secondary treatment (activated sludge or biological filter beds)
- Tertiary treatment (only some WWTPs)
- Final Effluent
- Surface waters

Images:
- Raw wastewater sampling point
- Activated sludge
- Secondary settlement tank
- Treated wastewater sampling point
- Terminal UV light
Wastewater treatment

- Raw wastewater
- Preliminary treatment (large solids screening)
- Primary treatment
- Secondary treatment (activated sludge or biological filter beds)
- Tertiary treatment (only some WWTPs)
- Final Effluent
- Surface waters

Raw wastewater sampling point | Activated sludge | Secondary settlement tank | Treated wastewater sampling point

Terminal UV light
Wastewater processing
VREfm is disseminated in wastewater

Wastewater treatment reduces but does not eliminate *E. faecium*
VREfm is disseminated in wastewater

Wastewater treatment reduces but does not eliminate *E. faecium*
VREfm is disseminated in wastewater

Wastewater treatment reduces but does not eliminate *E. faecium*
Wastewater contains a high diversity of *E. faecium* with hospital-adapted clones representing a minority population.

n=620 isolates
Dominant subclades shared between wastewater plants and hospitals

n=481

Subclades according to location
Dominant subclades shared between wastewater plants and hospitals

Network using 5-SNP cut-off
Resistance genes shared between wastewater, hospital sewer and invasive isolates

Resistance genes (n=28)

Glycopeptides Aminoglycosides Phenics MLS genes Tetracyclines

Resistome profiles (n=197)

- Wastewater
- Hospital sewer
- Bacteraemia

<table>
<thead>
<tr>
<th>Location</th>
<th>Waste</th>
<th>Resistome profiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wastewater</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Hospital sewer</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Bacteraemia</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resistome Profile</th>
<th>Bacteraemia</th>
<th>Hospital sewer</th>
<th>Wastewater</th>
</tr>
</thead>
<tbody>
<tr>
<td>trimethoprim</td>
<td>36</td>
<td>44</td>
<td>14</td>
</tr>
<tr>
<td>glycopeptides</td>
<td>23</td>
<td>24</td>
<td>50</td>
</tr>
<tr>
<td>aminoglycosides</td>
<td>12</td>
<td>13</td>
<td>32</td>
</tr>
<tr>
<td>phenics</td>
<td>16</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>MLS genes</td>
<td>41</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>tetracyclines</td>
<td>23</td>
<td>24</td>
<td>32</td>
</tr>
</tbody>
</table>
Resistance genes shared between wastewater, hospital sewer and invasive isolates

Resistance genes (n=28)
- trimethoprim
- glycopeptides
- aminoglycosides
- phenicols
- MLS genes
- tetracyclines

Resistome profiles (n=197)

Wastewater: 77
Hospital sewer: 68
Bacteraemia: 24

Legend:
- Brown: Bacteraemia
- Purple: Hospital sewer
- Green: Wastewater
Putative virulence genes detected in wastewater
Conclusions

- *E. faecium* (and VREfm) of the hospital-adapted lineage in wastewater is:
 - closely related to clinical isolates causing bacteraemia
 - is widely disseminated in both hospital and non-hospital-related wastewater in the East of England, indicating that hospital effluent is not its sole source

- Findings suggest there may be widespread VREfm carriage in the community with implications for introduction and spread into hospitals

- Wastewater may represent a useful reservoir for VREfm surveillance

- Wastewater treatment is insufficient to prevent downstream environmental contamination with VREfm
Acknowledgements

LSH&TM
• Prof. Sharon Peacock

CU Department of Medicine
• Dr Estée Török
• Beth Blane
• Plamena Naydenova

CUH Public Health England Lab
• Dr Nick Brown
• Estates Department

CU Department of Veterinary Medicine
• Dr Mark Holmes

The Wellcome Trust

Wellcome Trust Sanger Institute
• Prof. Julian Parkhill
• Dr Catherine Ludden
• Dr Kathy Raven
• Dr Danesh Moradigaravand
• Dr Francesc Coll
• Team 81
• Pathogen Informatics and Sequencing Teams
• Microreact Team

British Society for Antimicrobial Chemotherapy
• Dr Alasdair MacGowan

University of Oslo
• Prof. Jukka Corrander

Mahidol-Oxford Tropical Medicine Unit
• Dr Direk Limmathurotsakul

Health Innovation Challenge Fund
This publication presents independent research supported by the Health Innovation Challenge Fund (WT098600, HICF-T5-342), a parallel funding partnership between the Department of Health and Wellcome Trust. The views expressed in this publication are those of the author(s) and not necessarily those of the Department of Health or Wellcome Trust.