SERES-004: First placebo-controlled trial of an investigational oral microbiome drug (SER-109) to reduce recurrence of *Clostridium difficile* infection

Michele Trucksis, PhD, MD
Chief Medical Officer, Seres Therapeutics
Transparency Declaration

• I am an employee and stockholder of Seres Therapeutics
Clostridium difficile infection (CDI) is a 2-hit process requiring a 2-pronged treatment approach.

Hypothetical patient course

1. **Healthy person with intact colonization resistance**
2. **Antibiotics create ecologic holes in microbiome leading to dysbiosis**
3. **Exposure to *C. difficile* in a vulnerable patient leads to active infection**
4. **Antibiotics kill the vegetative forms**
5. **Risk of CDI recurrence rises with persistent dysbiosis**
 - *C. difficile* increases & cytotoxin production drives disease symptoms
 - Antibiotic exacerbation of dysbiosis
 - Disease recurs due to germination of dormant spores

Gastrointestinal microbiome diversity
Clostridium difficile infection (CDI) is a 2-hit process requiring a 2-pronged treatment approach

- **Healthy person with intact colonization resistance**
- **Antibiotics create ecologic holes in microbiome leading to dysbiosis**
- **Exposure to **Clostridium difficile** in a vulnerable patient leads to active infection**
- **Antibiotic mediated killing of vegetative forms only**
- **Restoration of colonization resistance**

Hypothetical patient course

- **Potential for microbiome therapy to increase bacterial diversity in the colon**
- **Sustained resolution of CDI**
SERES-001: Phase 1b Study of SER-109 to Prevent RCDI

30 patients with recurrent CDI responsive to antibiotics

Cohort 1
Dose = 10^7 to 10^{10} spores over 2 days

Cohort 2
Dose = 1.1×10^8 spores on 1 day

Achieved Primary Endpoint (N=13)

Cohort 1 (n=2) Cohort 2 (n=2)

Achieved Primary Endpoint (N=13)

Primary endpoint achieved in 26 of 30 patients (86.7%)
Led to use of 1×10^8 spores in Phase 2 trial

Khanna, S J Infect Dis 2016
SERES-004
ECOSPOR: A Randomized Double-Blind, Placebo-Controlled, Parallel-Group Study of SER-109 to Prevent Recurrent Clostridium difficile Infection (CDI)
Study Design and Inclusion Criteria

Study subjects:

• 89 adults enrolled in 37 US sites were randomized 2:1 to active drug: placebo (both as 4 capsules)

Study population:

• ≥ 3 episodes of CDI within prior 9 months, inclusive of qualifying episode

Qualifying episode:

• ≥ 3 unformed stools per day for 2 consecutive days
• Positive *C. difficile* stool test (no specific diagnostic test required)
• Clinical response to CDI SOC antibiotics: <3 unformed stools in 24 hours for 2 or more consecutive days prior to randomization
Schematic of Study Design

Screening Treatment Safety Follow-up

-21 to Day -1 Day 1 Week 4 Week 8 Week 12 Week 24

Screening

Randomization

End of Efficacy Period

SER-109 Arm
n = 58
(Dose: 1×10^8 spore equivalents)
1 dose on Day 1

Placebo Arm
n=29
1 dose on Day 1

In Clinic Visit
Schematic of Study Design

Primary Efficacy Endpoint:
Relative risk of CDI recurrence in PBO vs SER-109 arms

Primary Safety Objective:
To evaluate safety and tolerability

SER-109 Arm
- n = 58
- (Dose: 1×10^8 spore equivalents)
- 1 dose on Day 1

Placebo Arm
- n = 29
- 1 dose on Day 1

Screening
- -21 to Day -1
- In Clinic Visit

Randomization
- Day 1

Treatment
- Week 1
- Week 4
- Week 8

Safety Follow-up
- Week 12
- Week 24
Primary Efficacy Endpoint Criteria for recurrent CDI:

- ≥ 3 unformed stools per day for 2 consecutive days
- Positive *C. difficile* stool test which included any of the following:
 - Enzyme immunoassay (EIA) Glutamate dehydrogenase (GDH) antigen followed by PCR or
 - EIA GDH followed by EIA toxin
 - OR a single test of
 - PCR alone
- Investigator assessment that the subject required treatment
Demographic and Baseline Characteristics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>SER-109 (N=59)</th>
<th>Placebo (N=30)</th>
<th>Overall (N=89)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>n</td>
<td>59</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>63.7</td>
<td>66.1</td>
</tr>
<tr>
<td>Sex</td>
<td>n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>40 (67.8)</td>
<td>20 (66.7)</td>
<td>60 (67.4)</td>
</tr>
<tr>
<td>Male</td>
<td>19 (32.2)</td>
<td>10 (33.3)</td>
<td>29 (32.6)</td>
</tr>
<tr>
<td>Number of Prior CDI Episodes</td>
<td>n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>28 (47.5)</td>
<td>20 (66.7)</td>
<td>48 (53.9)</td>
</tr>
<tr>
<td>4</td>
<td>21 (35.6)</td>
<td>5 (16.7)</td>
<td>26 (29.2)</td>
</tr>
<tr>
<td>≥5</td>
<td>10 (16.9)</td>
<td>5 (16.7)</td>
<td>15 (16.9)</td>
</tr>
</tbody>
</table>
Safety Results

- SER-109 was generally well tolerated
- The most commonly reported adverse events in the SER-109 and placebo arms were gastrointestinal (GI) (55% vs 45%, respectively)
- Vast majority were mild or moderate in intensity

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Treatment Arms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SER-109 N = 60</td>
</tr>
<tr>
<td></td>
<td>N (%)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>15 (25)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>13 (22)</td>
</tr>
<tr>
<td>Flatulence</td>
<td>7 (12)</td>
</tr>
<tr>
<td>Nausea</td>
<td>6 (10)</td>
</tr>
<tr>
<td>Constipation</td>
<td>3 (5)</td>
</tr>
</tbody>
</table>

- Serious adverse event (SAE) rate (15.0% for SER-109, 10.3% for placebo)
 - No SAEs were classified as drug related
Primary Efficacy Endpoint:
CDI Recurrence Rates and Relative Risks in ITT Population

Prompted Root Cause Analysis Investigation:

- *C. difficile* diagnostics for subject entry and at recurrence
- Dose and dosing regimen
- Microbiome analysis of engraftment
- Phase 1b to Phase 2 manufacturing and formulation changes, and potential impact on drug activity (no findings)
Diagnostics
Hypothesis:

- Diagnostic tests in the Phase 2 study did not accurately identify:
 - Study subjects with true RCDI at study entry AND
 - True recurrence of disease after SER-109 or PBO dosing for the primary endpoint

Background Data Supporting the need for CDI Toxin Diagnostic Assays

- PCR leads to overdiagnosis [Polage JAMA Int Med 2016]
- PCR cannot differentiate carriage from disease [Smits Nat Rev 2016]

PCR was used for diagnosis of qualifying episode in 81% subjects and for recurrence during the study in 74%

- Samples were not available for re-testing for presence of free toxin for qualifying episode
Diagnostics at Time of Recurrence: Retesting for Cytotoxin by Independent Laboratory

• Samples available from recurrence time point were re-tested by an independent laboratory

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>SER-109</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>n</td>
<td>Number with Recurrence (%)</td>
<td>Number with Recurrence (%)</td>
</tr>
<tr>
<td>On Study (all test methods)</td>
<td>30</td>
<td>16 (53.3%)</td>
<td>59</td>
</tr>
<tr>
<td>Positive cytotoxin testing either on-study or at re-test*</td>
<td>21</td>
<td>7 (33.3%)</td>
<td>44</td>
</tr>
</tbody>
</table>

Use of PCR to measure *C. difficile* recurrences may have overestimated study recurrences in both treatment arms as it does not identify clinical disease, and further complicated interpretation of Phase 2 study results

*Limitations of this analysis include sample handling/storage issues
Dose
Increased prevalence of engrafted SER-109 strains is correlated with non-recurrence

- Placebo vs SER-109 treated subjects differed in the prevalence of SER-109 strains at 1 week post-treatment
- There were 11 species that were significantly more prevalent (Fisher’s exact p<0.05) in subjects that received SER-109 and did not recur (blue points)
Dose Level may impact the magnitude of engraftment of SER-109 in subjects

- Diversity of commensal spore-forming species at 1 week post-treatment is associated with dose
- Higher dose, >1.5 x 10^8 SporQs can result in more SER-109 species engrafting (Phase 1b trial)
- Phase 2 subjects that did not recur had similar diversity as low dose Phase 1b subjects
- Subjects that recurred and/or received Placebo had the lowest diversity

Phase 1: high dose, low dose
Phase 2: SER-109-NR, SER-109HCR
Phase 2: Pbo-NR, Pbo-HCR
Summary

Subject selection for study entry
• Use of PCR for study entry may have led to inclusion of subjects who were colonized with *C. difficile* but had alternative causes for diarrhea

Diagnosis of recurrence
• Use of PCR at time of recurrent diarrhea may have led to over-diagnosis of recurrence

Conclusion: Toxin testing may be required to improve diagnostic accuracy, in concordance with the recent 2016 ESCMID CDI guidelines

Dosing Regimen and Efficacy
• Increased prevalence of engrafted SER-109 strains is correlated with non-recurrence
• Engraftment of SER-109 was more robust among the subjects who received higher doses in the Phase 1b study

Conclusion: SER-109 is biologically active but a dose increase may be necessary

Safety
• SER-109 was well tolerated and no SAEs were deemed drug-related
• Most common adverse events in the both arms were GI
Credits

Authors Seres Therapeutics:

Michele Trucksis
Patricia Bernardo
Christopher Ford
Edward O’Brien
Rosanne Vetro
Jennifer Wortman
James Weston
Matthew Henn

We would like to thank all the Investigators in the SERES-004 trial and importantly the patients who participated.

Authors PIs and Advisors:

Ian Baird, Remington-Davis Inc., Columbus, OH USA
Oliver A. Cornely, University Hospital of Cologne, Cologne, Germany
Yoav Golan, Tufts Medical Center, Boston, MA USA
Gail A. Hecht, Loyola University, Chicago, IL USA
Darrel S. Pardi, Mayo Clinic, Rochester, MN USA
John Pullman, Mercury Street Medical, Butte, MT USA
Christopher R. Polage, University of California, Sacramento, CA USA
Mark H. Wilcox, University of Leeds, Leeds, United Kingdom