SYN-004 (ribaxamase) Significantly Reduced the Incidence of *Clostridium difficile* Infection in a Phase 2b Clinical Study

John F. Kokai-Kun

ECCMID

Vienna, Austria

April 22, 2017
Forward-Looking Statements

This presentation includes forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, on Synthetic Biologics’ current expectations and projections about future events. In some cases forward-looking statements can be identified by terminology such as "may," "should," "potential," "continue," "expects," "anticipates," "intends," "plans," "believes," "estimates," "indicates," and similar expressions. These statements are based upon management’s current beliefs, expectations and assumptions and are subject to a number of risks and uncertainties, many of which are difficult to predict and include statements regarding our timeline for our SYN-004 (ribaxamase) clinical trials and reporting of data, the size of the market, benefits to be derived from use of SYN-004 (ribaxamase), our anticipated patent portfolio, and our execution of our growth strategy. The forward-looking statements are subject to risks and uncertainties that could cause actual results to differ materially from those set forth or implied by any forward-looking statements. Important factors that could cause actual results to differ materially from those reflected in Synthetic Biologics’ forward-looking statements include, among others, our product candidates demonstrating safety and effectiveness, as well as results that are consistent with prior results, our ability to initiate clinical trials and if initiated, our ability to complete them on time and achieve the desired results and benefits, our clinical trials continuing enrollment as expected, our ability to obtain regulatory approval for our commercialization of product candidates or to comply with ongoing regulatory requirements, regulatory limitations relating to our ability to promote or commercialize our product candidates for the specific indications, acceptance of our product candidates in the marketplace and the successful development, marketing or sale of our products, developments by competitors that render our products obsolete or non-competitive, our ability to maintain our license agreements, the continued maintenance and growth of our patent estate, our ability to become or remain profitable, our ability to establish and maintain collaborations, our ability to obtain or maintain the capital or grants necessary to fund our research and development activities, a loss of any of our key scientists or management personnel, and other factors described in Synthetic Biologics’ annual report on Form 10-K for the year ended December 31, 2016, subsequent quarterly reports on Form 10-Qs and any other filings we make with the SEC. The information in this presentation is provided only as of the date presented, and Synthetic Biologics undertakes no obligation to update any forward-looking statements contained in this presentation on account of new information, future events, or otherwise, except as required by law.
Disruption of the Gut Microbiome Can Lead to *C. difficile* Infection

IV Antibiotics

Probiotics and prebiotics

Dysbiosis

FMT & Bacterial Replacement Therapy

C. difficile spores

Biliary excretion

Antibiotics (Vaccines)

mAbs & Vaccines

CDI

ribaxamase

CDI is serious, deadly, and expensive

29,000 US deaths/year within 10 days of diagnosis

1 in 5 (8,000) recurrences within 2 months

CDI adds up to:

12 days in the hospital

$27,160 per case in direct costs

Synthetic Biologics
SYN-004 (ribaxamase)

rye bak’ sa mase

- An orally administered, β-lactamase (an enzyme of 29 kDa) that is designed to degrade penicillins and cephalosporins (engineered from P1A)

- Formulated for pH-dependent release at ≥ 5.5 (proximal small intestine)

- Expected to be orally administered during and after administration of certain intravenous (IV) β-lactam-containing antibiotics like ceftriaxone

- Intended to degrade the excess antibiotics that are excreted into the small intestine via the bile (ribaxamase is stable in human intestinal chyme)

- Designed to prevent disruption of the gut microbiome and thus protect from opportunistic GI pathogens like *C. difficile*
Pre-clinical Animal Models

Demonstrate the tolerability and *in vivo* activity of ribaxamase

• Fistulated dog model
- Ribaxamase degraded IV β-lactam antibiotics excreted into the dog intestine

• Nonclinical toxicology in dogs
- Ribaxamase was well tolerated up to 57 mg/kg/day
- Ribaxamase was well tolerated when administered with IV ceftriaxone
- Ribaxamase was not absorbed and did not change the plasma PK of the ceftriaxone

• Piglet Model of Antibiotic-Mediated Dysbiosis
- Ribaxamase protected the gut microbiome from disruption by β-lactam antibiotics
- Ribaxamase prevented the propagation of antibiotic resistance genes
Clinical development
Early Phase Clinical Studies
Phase 1 and Phase 2a

• **Phase 1**-two studies in normal, healthy volunteers
 - Well tolerated up to 750 mg single dose and 300 mg q.i.d. – 7 days
 - Not absorbed and no anti-drug antibodies were detected

• **Phase 2a**-two studies in subjects with ileostomies, IV ceftriaxone ± ribaxamase
 - Ribaxamase degraded all ceftriaxone in the intestine
 - Ribaxamase did not affect the plasma PK of the ceftriaxone
 - Ribaxamase can be administered in the presence of proton pump inhibitors
Ribaxamase: Phase 2b Proof-of-Concept Study

54 Multinational Clinical Sites Enrolled Patients

Patients admitted to the hospital for treatment of a lower respiratory tract infection

mITT 412 patients

1:1

Ceftriaxone + Ribaxamase *(plus a macrolide)*

Ceftriaxone + Placebo *(plus a macrolide)*

Primary Endpoint:
- Prevention of *C. difficile* infection (CDI)

Secondary Endpoint:
- Prevention of *non-C. difficile*, antibiotic-associated diarrhea (AAD)

Exploratory Endpoints:
- Evaluate ability to limit disruption of the gut microbiome
Enriching for a Population at Risk for *C. difficile* Infection

- Patient were admitted to a hospital for several days
- At least 5 days of ceftriaxone use expected
- Patients > 50 years old
- Patients with higher PORT scores
 (a measure of the severity of the primary infection)
Phase 2b Proof of Concept Study

Study Design

Randomized 1:1, 150 mg ribaxamase or placebo

- US
- Canada
- Romania
- Bulgaria
- Hungary
- Poland
- Serbia

Fecal microbiome and fecal colonization samples taken for analysis

Diarrhea = 3 or more loose or watery stools in a 24 hour period, samples collected
CDI = local lab results for presence of *C. difficile* toxins A and/or B by an approved test (confirmed at a central lab by toxin ELISA)
Study Demographics and Safety Outcomes

• 206 patients per group in mITT
• Average age of patients ~70 years old
• ~2/3 males
• ~1/3 of patients received macrolides
• ~1/3 patients received concurrent drugs for stomach acid
• TEAEs and SAEs were similar between active and placebo and there was no trend associated with ribaxamase use
• Cure rate for the LRTI to the ceftriaxone treatment was ~99% in both groups at 72 hours post treatment and at 2 weeks post treatment
Clostridium difficile Infection

- No CDI patients reported previous CDI
- P-values are 1-sided based on the pre-specified Z-test
- The study was powered at 80% with 1-sided alpha=0.05
Antibiotic-associated Diarrhea

- P-values are 1-sided based on the pre-specified Z-test
New *C. difficile* Colonization at 72 hrs & 4 weeks

- P-values are 1-sided based on the pre-specified Z-test
New VRE Colonization at 72 hrs & 4 weeks

- P-values are 1-sided based on the pre-specified Z-test
Conclusions

• Ribaxamase reduced the incidence of new onset CDI by 71% as compared with placebo (confirmed at the central lab), p=0.045

• Ribaxamase appeared to be well tolerated and not affect the cure rate for the primary infection

• Ribaxamase did not significantly reduce AAD as defined in the protocol, but there was a reduction in all cause diarrhea

• Ribaxamase reduced new colonization with *C. difficile* and VRE

• Analysis of fecal samples for changes in the gut microbiome and gut resistome (CDC contract) are on-going
Acknowledgements
Synthetic Biologics, Inc.

• Research and Development
 • Mike Kaleko
 • Sheila Connelly
 • Christian Fulan-Fregula

• CMC
 • Ray Stapleton
 • Andy Bristol
 • Steve Hubert

• Clinical Development
 • Joe Sliman
 • Chris de Costa
 • Charles Le

• Clinical Operations
 • Heidi Whalen
 • Tracey Roberts
 • Heather McFall

• Project Management
 • Olivia Coughlin
 • Lara Guzman

• Regulatory Affairs
 • Amy Sloan
 • Scott Shapot