Activity of ceftazidime-avibactam against carbapenem non-susceptible Enterobacteriaceae isolated from respiratory infections as part of the INFORM global surveillance program, 2014–2015

P1296

K. Kakiesa, I. M. H. de Jonge, S. Stehr, D. Sahm, International Health Management Associates, Schuchardt, IL, USA – Forma of Antibiotica Pharmaceuticals, Wellman, IA, USA

Abstract

Ceftazidime-avibactam was not active against MBL-positive isolates (<6% susceptible), as expected. As GES, n=1). Ceftazidime-avibactam showed potent activity against carbapenemase-positive MBL-negative isolates, including 98.9% (MIC ≤8 mg/L) of CRE carrying KPC, OXA-48-like β-lactamases developed to treat infections caused by CRE that possess serine carbapenemases or non-carbapenemase-mediated mechanisms. We evaluated the activity of ceftazidime-avibactam in vitro against 220 CRE isolates from patients with RTI collected from patients with RTI (n=220). The in vivo activity of ceftazidime-avibactam was greater than that of comparator agents (cefepim, levofloxacin, tigecycline, and meropenem) against MBL-negative CRE (Figure 2E). Ceftazidime-avibactam was active in vitro against 48.9% (MIC ≤8 mg/L) of CRE carrying KPC, OXA-48-like β-lactamases developed to treat infections caused by CRE that possess serine carbapenemases or non-carbapenemase-mediated mechanisms. The activity of ceftazidime-avibactam was comparable to that of colistin in AP and exceeded it in all other regions (Table 1). Ceftazidime-avibactam provides a new treatment option for respiratory infections caused by CRE that possess serine carbapenemases or non-carbapenemase-mediated resistance mechanisms varied among regions.

Table 1. In vitro activity of ceftazidime-avibactam and comparator agents against CRE collected globally from patients with RTI.

<table>
<thead>
<tr>
<th>Agent</th>
<th>MIC Distribution (%)</th>
<th>0.03</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceftazidime</td>
<td></td>
<td>≤0.015</td>
<td>0.06</td>
<td>0.12</td>
<td>>128</td>
</tr>
<tr>
<td>Avibactam</td>
<td></td>
<td>0.06</td>
<td>0.12</td>
<td>>128</td>
</tr>
<tr>
<td>Cefepime</td>
<td></td>
<td>0.5</td>
<td>>16</td>
</tr>
<tr>
<td>Meropenem</td>
<td></td>
<td>>8</td>
</tr>
<tr>
<td>Tigecycline</td>
<td></td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>67.5</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td></td>
<td>>4</td>
</tr>
</tbody>
</table>

Results

Conclusions

• Ceftazidime-avibactam provides a new treatment option for respiratory infections caused by CRE that possess serine carbapenemases or non-carbapenemase-mediated resistance mechanisms varied among regions.
• Regional differences in the incidence of MBL-mediated resistance are important to consider when assessing the value of ceftazidime-avibactam.

Materials & Methods

1. CRE isolates were collected from 417 medical centers in 27 countries. Infection sources included sputum (n=241), respiratory secretion (n=125), bronchoalveolar lavage (n=10), skin (n=2), joint (n=2), bile (n=1), and other (n=2).

2. CRE were atypical isolates with resistance to carbapenem (MIC >8 mg/L) and were screened for the presence of β-lactamase genes encoding carbapenemases (CPE, OXA-48-like, OXA-163, OXA-164, OXA-232, NDM-1), metallo-β-lactamases (MBL, IMP-1, VIM-1, SIM-1), extended-spectrum β-lactamases (ESβ-lactamases), ketolactamases, cephalosporinases, beta-lactam/beta-lactamase (BL/BLase) in vitro

3. ISs were performed by PCR followed by sequencing as described previously.

Figure 2A. Ceftazidime-avibactam MIC distributions against CRE isolates collected globally from patients with RTI (n=220).

Figure 2B. Ceftazidime-avibactam MIC distributions against carbapenemase-negative CRE isolates collected from patients with RTI (n=220).

Figure 2C. Ceftazidime-avibactam MIC distributions against MBL-negative CRE isolates collected from patients with RTI (n=220).

Figure 2D. Ceftazidime-avibactam MIC distributions against OXA-48-like CRE isolates collected from patients with RTI (n=220).

Figure 2E. Ceftazidime-avibactam MIC distributions against MBL-positive CRE isolates collected from patients with RTI (n=220).

Table 1. In vitro activity of ceftazidime-avibactam and comparator agents against CRE collected globally from patients with RTI.