Carnival meets Oktoberfest: Molecular Epidemiology of the HIV Epidemic in Three German Metropolitan Regions

Martin Hoenigl1,2, Melanie Stecher2,4, Johannes Bogner1, Clara Lehmann1,4, Josef Eberle2, Christoph Spinner2,3, Rolf Kaiser6, Georg Behrens1,11, 11, Karl Fäthkenheuer1, Sanjay R. Mehta7, Joerg Janne Vehrschild11,4, Antoine Chailley1

1 Division of Infectious Diseases, University of California San Diego, San Diego, United States, 2 Medical University of Graz, Graz, Austria, 3 University of Cologne, Cologne, Germany, 4 German Center for Infection Research (DZIF). Partner Site Bonn-Cologne, Cologne, Germany. 5 Sektion Klinische Infektiologie, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany, 6 LMU München, Munich, Germany, 7 Department of Medicine II, Technische Universität München, Munich, Germany, 8 German Center for Infection Research (DZIF). Partner Site Munich, Munich, Germany, 9 Institute of Virology, University Hospital of Cologne, Cologne, Germany, 10 Medizinische Hochschule Hannover, Hannover, Germany, 11 German Center for Infection Research (DZIF). Partner Site Hannover, Hannover, Germany.

Background

- By inferring potential transmission links between risk groups, demographic subpopulations, and geography, one may better understand the drivers of HIV spread locally, and the links between epidemics outside the region.
- High rates of new HIV diagnoses are observed in Cologne/Bonn, Hannover, and Munich; regions which host some of the largest annual festivals in Europe (i.e. Oktoberfest, Carnival, Schuetzenfest, Christopher Street Day with 1 to 6 million visitors each).

Objective

To use molecular epidemiology to characterize the transmission dynamics of the HIV epidemic in three German metropolitan regions.

Methods

- **Participants:** 2,774 unique HIV positive individuals, receiving care at the University Hospital of Cologne/Bonn (n=1,766), Munich (n=641) and Hannover (n=334) in Germany.
- **HIV partial pol sequences, clinical and socio-demographic data were obtained between 1999 – 2016.**
- **Measures:**
 - Phylogenetic and network analyses were performed to infer putative relationships between all HIV partial pol sequences.
 - After quality filtering, putative transmission linkages were inferred when two sequences were ≤1.5% genetically different (TN93 distance measure).
 - Multiple inferred linkages were resolved into transmission clusters.
- We further applied a computationally efficient network based approach to analyze relationships between all publicly available HIV sequences (n=150,396) found in the Los Alamos National Laboratory HIV Sequence database https://www.hiv.lanl.gov/content/index.

Results

- **Characteristics of the sampled population:**
 - A German map of the sampled population using the first 3 numbers of the zip code of residence is displayed in **FIGURE 1.**
 - 595/2,774 (21.4%) sequences linked with at least one other sequence, forming 184 transmission clusters, ranging in size from 2 to 18 sequences; **FIGURE 2.**
 - Clustering individuals were significantly more likely to be younger, reporting MSM contact as main risk factor and infected with subtype B.
 - Among those reporting heterosexual sex as main risk factor, men were more likely to cluster than women (p<0.01). Of the 78 clustering men reporting heterosexual sex as main risk factor, 34 (43.6%) had links only with men reporting MSM contact.
 - 32/184 transmission clusters contained sequences from more than one region.
 - Clustering men were significantly more likely to be found in a position bridging regional HIV epidemics than clustering women (p=0.03).
- **By combining our sample with publicly available HIV sequences, we found a total of 236 clusters that linked sequences from our sample (total n=547) and LANL database (n=1,407, of which 31% were from other German centres).**

Table. Population characteristics

<table>
<thead>
<tr>
<th>Age [median (IQR)]</th>
<th>Not clustering, N=2,179 (78.6%)</th>
<th>Clustering, N=595 (21.4%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male Sex</td>
<td>1,681 (77.1)</td>
<td>540 (90.7)</td>
<td><0.01</td>
</tr>
<tr>
<td>Subtype B</td>
<td>1,510 (69.2)</td>
<td>532 (89.4)</td>
<td><0.01</td>
</tr>
<tr>
<td>Risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSM</td>
<td>1,053 (48.3)</td>
<td>395 (66.3)</td>
<td><0.01</td>
</tr>
<tr>
<td>HTS</td>
<td>509 (23.3)</td>
<td>113 (18.9)</td>
<td></td>
</tr>
<tr>
<td>IDU</td>
<td>111 (5)</td>
<td>26 (4.3)</td>
<td></td>
</tr>
<tr>
<td>ENDEMIC*</td>
<td>285 (13)</td>
<td>7 (1.1)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Map of sampled population

Figure 2: HIV Transmission Network by region, sex and risk behavior

Conclusions

- **Transmission clusters were mostly comprised of younger MSM.**
- **Links between HIV risk groups were frequent and mostly observed between men reporting heterosexual sex as main risk and MSM.**
- Regional epidemics were interlinked (primarily men to men links) and also linked to other epidemics across Germany and the world.
- Men were more likely to be found in a position bridging regional HIV epidemics than women.
- Results highlight the pitfalls of focusing prevention efforts on specific risk groups or specific locales.