Antimicrobial resistance (AMR) represents a significant threat to human health. To date, there is a paucity of AMR data at the global level. Moreover, developing countries are under-represented in existing reports despite the likely higher AMR burden in such countries when compared to high-income countries.

We conducted a laboratory-based global survey on the prevalence of multidrug-resistant organisms (MDROs) in inpatient clinical blood and urinary specimens in a diverse range of healthcare facilities worldwide, while also evaluating laboratory microbiology capacity.

Summary of methods:
- **Design**: online survey (1st March-30 June 2014) based on:
 - routine collection of clinical blood and urine (MSU & CSU) culture specimens
 - Only 1st isolate from inpatients during one week
- **Participants**: health-care settings registered for the WHO SAVE LIVES: Clean Your Hands global campaign and other WHO-associated networks
- **Main targeted resistance patterns**:
 - methicillin-resistant *Staphylococcus aureus* (MRSA)
 - vancomycin-resistant enterococci (VRE)
 - extended-spectrum β-lactamase producing Enterobacteriaceae (ESBL-PE)
 - carbapenem-resistant Enterobacteriaceae (CRE)
 - multi-resistant *Acinetobacter* species (MRAB)

To evaluate laboratory microbiology capacity, we assessed microbiologic methods used for bacterial identification and identification of resistance (Table).

Methods used for bacterial identification

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>Gram stain AND confirmation either by Slide or Tube Coagulase OR Automated OR Non-automated methods</td>
</tr>
<tr>
<td>Enterococci spp.</td>
<td>Gram stain confirmation either by Automated OR Non-automated methods</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td>Gram stain confirmation either by Automated OR Non-automated methods</td>
</tr>
</tbody>
</table>

Methods used for identification of resistance

- Gram stain AND use of one of the following susceptibility testing methods: CLSI, or EUCAST, or BSAC or SFM

Laboratories with clinical microbiologist: 85.5%.

Laboratories meeting minimum standards for both bacterial identification and identification of resistance:
- *Staphylococcus aureus*: 380 (90.5%)
- Enterococci spp.: 359 (85.5%)
- *Enterobacteriaceae*: 368 (87.6%)

Capacity was lowest in Africa, particularly for identification of resistance.

Enterobacteriaceae were the most common organisms (1,721 blood and 12,763 urine strains), and had lowest proportion of MDRO (Figure 1).

S. aureus was the next most frequent organism from blood cultures (n=409), with 38.1% (32.8–42.3) MRSA (Figure 1).

MDRO prevalence tended to be higher in low- and middle-income countries.

Copyright © World Health Organization. Contact: Prof B. Allegranzi, allegranzi@who.int