Antimicrobial susceptibility and molecular mechanisms of acquired resistance in Actinotignum (Actinobaculum) schaalii isolated in patients with hidradenitis suppurativa

Vincent Cattoir*, Damasie Malandain, Sopheak Hem, Lynn Adib, Hélène Coignard-Biehler, Aude Nassif, Olivier Join-Lambert

1Chu de Caen, Caen, France
2Institut Pasteur Du Cambodge, Phnom Penh, Cambodia
3Hôpital Necker-Enfants Malades, Paris, France
4Institut Pasteur, Paris, France

Background: Actinotignum (Actinobaculum) schaalii is an emerging uropathogen in elderly and patients with predisposing urological conditions, but it has recently been recovered from chronic lesions of patients suffering from hidradenitis suppurativa (HS). Since the combination clindamycin-rifampicin (CLI-RIF) is empirically recommended as first-line therapy in HS patients, there is a potential risk of emerging resistance. The aim of the study was then to assess the in vitro antimicrobial susceptibility of A. schaalii isolated in this context as well as to dissect the genetic basis of acquired macrolide-lincosamide-streptogramin (MLS) and RIF resistance.

Material/methods: A total of 20 clinical isolates of A. schaalii collected from skin lesions from 14 HS patients were studied. Identification was carried out by MALDI-TOF mass spectrometry. MICs of 18 antibiotics were determined using the agar dilution method on Mueller-Hinton agar plate supplemented with 5% lysed horse blood. Screening for erm(A), erm(B), erm(C), erm(F), erm(G) and erm(X) class genes was performed by PCR. The rifampicin-resistance-determining region (RRDR) of the rpoB gene was also identified and sequenced.

Results: All 20 isolates exhibited low MICs for amoxicillin, piperacillin, ceftriaxone, imipenem, vancomycin, teicoplanin, quinupristin-dalfopristin, tetracycline and tigecycline (MIC$_{50/90}$ at 0.12/0.12, 0.06/0.06, 0.01/0.01, 0.03/0.03, 0.12/0.25, 0.25/0.25, 0.25/0.5, 0.5/0.5 and 0.12/0.12 mg/L, respectively). MICs of ciprofloxacin, levofloxacin, moxifloxacin, linezolid, gentamicin and cotrimoxazole were slightly higher with MIC$_{50/90}$ at 2/2, 1/1, 0.5/1, 1/1, 1/1 and 4/4 mg/L, respectively. Sixteen isolates (80%) were highly resistant to both erythromycin (MICs >256 mg/L) and CLI (MICs from 32 to >256 mg/L), including three isolates (15%) also resistant to RIF (MICs at 128 mg/L). All MLS-resistant isolates only harboured the erm(X) resistance gene. All RIF-resistant isolates possessed mutations in the RRDR of rpoB (Escherichia coli numbering): a double mutation (Ser509Phe + Arg529His) for two isolates and a unique mutation (Ser531Leu) for the last isolate.

Conclusions: This study shows a high prevalence (80%) of MLS resistance among A. schaalii recovered from HS patients for which CLI is commonly used. As previously described, it is due to Erm(X), suggesting that A. schaalii could be an important reservoir for this resistance determinant. Also, this is the first report of RIF resistance in this species with characterization of the corresponding molecular mechanism. Taken together, this confirms the risk of emerging resistance to both CLI and RIF in HS patients, which may be due, at least partially, to the antagonistic effect between these two molecules.