Ongoing outbreak due to Klebsiella pneumoniae OXA-48 in an Italian referral hospital

Anna Knezevich*, Fabio Arena, Marta Mascarello, Manuela DI Santolo, Clara Fabris, Viola Conte, Marina Busetti, Roberto Luzzati, Gian Maria Rossolini

1Microbiology Unit, University Hospital of Trieste, Trieste, Italy
2Department of Medical Biotechnologies, University of Siena, Siena, Italy
3Infectious Diseases Unit, University Hospital of Trieste, Trieste, Italy
4University of Siena, Department of Medical Biotechnologies, Siena, Italy, Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, University of Florence, Department of Experimental and Clinical Medicine, Florence, Italy

Background: The 2014 ECDC Surveillance data have confirmed a high-level endemicity of carbapenem-resistant Klebsiella pneumoniae in Italy. KPC is by far the most widespread mechanism of resistance, accounting for >90% of the strains. Here we describe an ongoing outbreak, caused by an OXA-48-producing Klebsiella pneumoniae strain, in an Italian hospital located in area of very low CRE endemicity. Thus far, production of OXA-48 is a mechanism that has been rarely reported in Italy.

Material/methods: The bacterial identification was performed by Vitek-2 (bioMérieux). Minimal inhibitory concentrations (MICs) were determined by Vitek-2 and/or by a micro-dilution method (Sensititre Diagnostic System, Trek), and interpreted according to the EUCAST criteria. The mechanism of carbapenem resistance was confirmed by a Real Time PCR method which allows the detection of the blaOXA-48, blaVIM, blaIMP-1, blaNDM, and blaKPC carbapenemase genes. Genotyping to determine genetic relatedness between isolates was performed by an analysis of pulsed-field gel electrophoresis (PFGE) profiles of chromosomal DNA digested with XbaI.

Results: At the beginning of September 2015 a patient underwent cholecystectomy and after 20 days he needed a drainage at the surgical site, from which an MDR Klebsiella pneumoniae strain was isolated, subsequently identified as OXA-48 producer. The strain was resistant to penicillins +/- beta-lactamase inhibitors, cephalosporins, carbapenems, levofloxacin, was intermediate to tigecycline, and was susceptible to colistin, amikacin and trimethoprim/sulfamethoxazole. The resistance profile suggested the presence of an ESBL mechanism associated to OXA-48. In the following two weeks the same strain had been detected in another 4 patients, three in the surgery department, and one in a medical ward. Two of them were intestinal colonisations, while the other two had clinical infections (peritoneal and drainage fluids).

PFGE typing of the isolates identified a single profile.
All five cases were characterized as hospital-acquired, and none of them were linked to a history of travel in endemic areas for OXA-48 producing *Klebsiella pneumoniae*. After a temporary containment, three new cases were detected in late November 2015, one from a blood culture, one from a cutaneous swab and one from a rectal swab, all admitted to the medical department, whose characterization is ongoing.

Conclusions: Trieste hospital is located in a Region of low-level endemicity of carbapenem-resistant *Klebsiella pneumoniae*, and before September 2015 the only mechanism of resistance to carbapenems detected in *Klebsiella pneumoniae* had been KPC production. In this report we describe the first outbreak of OXA-48 *Klebsiella pneumoniae* in Italy. Further studies will investigate the possible source of the outbreak.