Vaccines in Tuberculosis

Helen McShane
The Jenner Institute
University of Oxford
Global Epidemiology

In 2015:
- 10.4m new cases of TB
 - 1.2m in HIV+
 - ~480,000 MDR-TB
- 1.8m deaths
 - 0.4m in HIV+
- Rate of decline of incidence only 1.5%
 - Needs to be 4-5% by 2020
Global Plan to End TB: 2016 - 2020

• UN Sustainable Development Goals
 – Goal 3: Ending the TB epidemic by 2030

• 5 year investment plan

• US$65b needed

• US$9b to fund new tools
 – New drugs
 – New diagnostics
 – New vaccines
Target populations for an effective TB vaccine

• Infants
 – High burden of disease, particularly in SSA

• Adolescents / young adults
 – Greatest economic impact
 – Main population responsible for transmission

• HIV-infected adults
 – Still at increased risk despite ART
Indications for an effective TB vaccine

• Prophylactic
 – Infants
 – *M. tb* uninfected adolescents / young adults
 – Prevention of disease and/or prevention of infection

• Post-exposure
 – *M. tb* infected

• Therapeutic
 – As adjunct to chemotherapy
 – MDR/XDR
Challenges in TB vaccine development

- Uncertain predictive value of animal models
- Lack of immunological correlate
- Disease incidence
- Site infrastructure
BCG

- Live attenuated *M. bovis*
- First used in 1921 (per os)
- Efficacy:
 - Good
 - Disseminated TB and TB meningitis
 - Leprosy
 - Bad
 - Lung disease
 - Boosting *(Rodrigues et al, Lancet 2005)*
Design of an improved vaccine against TB

• Include BCG in new regime

• Needs to induce cellular immune response
 – Importance of humoral immunity unclear

• 2 potential strategies:
 – Boost BCG with a subunit vaccine
 • Protein + adjuvant
 • Viral vector
 – Replace BCG with improved BCG / attenuated *M. tb*
Global Clinical Portfolio

Phase 1
- DAR-901
 Dartmouth, Aeras
- MTBVAC
 Biofabri, TBVI, Zaragoza
- Ad5 Ag85A
 McMaster, CanSino
- ChAdOx1.85A / MVA85A
 Oxford, Birmingham
- MVA85A / MVA85A (ID, Aerosol)
 Oxford
- TB / FLU-04L
 RIBSP

Phase 2a
- RUTI
 Archivel Farma, S.L
- H1/H56: IC31
 SSI, Valneva, Aeras
- H4: IC31
 Sanofi Pasteur, SSI, Aeras
- ID93 + GLA-SE
 IDRI, Wellcome Trust, Aeras

Phase 2b
- VPM 1002
 SIU, Max Planck, VPM, TBVI
- M72 + AS01E
 GSK, Aeras

Phase 3
- Vaccæ™
 Anhui Zhifei Longcom

Please note: Information is self-reported by vaccine sponsors.

Revised on December 17, 2015
Increased vaccine efficacy against tuberculosis of recombinant *Mycobacterium bovis* bacille Calmette-Guérin mutants that secrete listeriolyisin

Leander Grode,1 Peter Seiler,1 Sven Baumann,1 Jürgen Hess,1 Volker Brinkmann,1 Ali Nasser Eddine,1 Peggy Mann,1 Christian Goosmann,1 Silke Bandermann,1 Debbie Smith,2 Gregory J. Bancroft,2 Jean-Marc Reyrat,3 Dick van Soolingen,4 Bärbel Raupach,1 and Stefan H.E. Kaufmann1

1Max Planck Institute for Infection Biology, Berlin, Germany. 2Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom. 3INSERM, Faculté de Médecine Necker-Enfants Malades, Paris, France. 4National Mycobacteria Reference Laboratory, National Institute of Public Health and the Environment, Bilthoven, The Netherlands.

The Journal of Clinical Investigation http://www.jci.org Volume 115 Number 9 September 2005

Safety and Immunogenicity of the Recombinant *Mycobacterium bovis* BCG Vaccine VPM1002 in HIV-Unexposed Newborn Infants in South Africa

André G. Loxton,1 Julia K. Knaul,1 Leander Grode,1 Andrea Gutschmidt,1 Christiane Meller,1 Bernd Eisele,1 Hilary Johnstone,1 Gian van der Spuy,2 Jeroen Maertzdorf,2 Stefan H. E. Kaufmann,2 Anneke C. Hesseling,2 Gerhard Walzl,3 Mark F. Cotton,1 the VPM Study Group

A

B

C

\[\text{log CFU/lung (H37Rv)} \]

Days after challenge

ESC MID eLibrary

© by author
MVA.85A Boosting of BCG and an Attenuated, phoP Deficient M. tuberculosis Vaccine Both Show Protective Efficacy Against Tuberculosis in Rhesus Macaques

Frank A. W. Verreck¹,², Richard A. W. Vervenne³, Ivanela Kondova², Klaas W. van Kralingen³, Edmond J. Remarque¹, Gerco Braskamp⁵, Nicole M. van der Werff¹, Ariena Kersbergen¹, Tom H. M. Ottenhoff³, Peter J. Heidt³, Sarah C. Gilbert³, Brigitte Gicquel⁶, Adrian V. S. Hill⁷, Carlos Martin⁷, Helen McShane⁵, Alan W. Thomas⁵

¹ Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, the Netherlands; ² Animal Science Department, Biomedical Primate Research Centre, Rijswijk, the Netherlands; ³ Department of Pulmonology, Leiden University Medical Centre, Leiden, the Netherlands; ⁴ Department of Infectious Diseases, Leiden University Medical Centre, Leiden, the Netherlands; ⁵ The Jenner Institute, University of Oxford, Oxford, United Kingdom; ⁶ Institut Pasteur, Paris, France; ⁷ Centro de Investigación Biomedica en Red de Enfekmidades Respiratorias (CIBERSA), Faculty of Medicine, University of Zaragoza, Zaragoza, Spain

First Human Immunization with A Live-Attenuated Mycobacterium tuberculosis: a randomized, double-blind, controlled phase I trial

François Sperti⁷*, M.D., Régine Audran, Ph.D., Reza Chakour, M.D., Olfa Karoui, M.D., Viviane Steiner-Monard, M.D., Anne-Christine Thierry, B. S., Carole E. Mayor, B. S., Nils Rettby, M.S., Katia Jaton, Ph. D., Laure Vallotton, M.D., Catherine Lazor, M.D., Juana Doce, Ph.D., Eugenia Puente, Ph.D., Dessislava Marinova, Ph.D., Nacho Aguilo Ph.D and Carlos Martin⁷*, Ph.D.

PPD

SFU / million PBMC

MTBVAC 5x10³

MTBVAC 5x10⁴

MTBVAC 5x10⁵

BCG 5x10⁵
Safety and immunogenicity of candidate vaccine M72/AS01E in adolescents in a TB endemic setting

Adam Penn-Nicholson a, b, *, Hennie Geldenhuys a, b, Vivine Burny b, Robbert van der Most b, Cheryl L. Day a, c, d, Erik Jongert b, Philippe Moris b, Mark Hatherill a, Opokua Ofori-Anyinam b, 2, Willem Hanekom a, 2, the Vaccine Study Team,

Vaccine Study Team: Anne Bollaerts b, Marie-Ange Demoitie b, Angelique Kany Kany Luabeya a, Evi De Ruymaeker b, Michele Tameris a, Didier Lapierre b, Thomas J. Scriba a

a South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
b GSK Vaccines, Rixensart, Belgium
c Department of Global Health, Rollins School of Public Health, Atlanta, GA, USA
d Emory Vaccine Center, Emory University, Atlanta, GA, USA
The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent *Mycobacterium tuberculosis* infection

Philana Ling Lin,1 Jes Dietrich,2 Esterlina Tan,3 Rodolfo M. Abalos,2 Jasmin Burgos,3 Carolyn Bigbee,4 Matthew Bigbee,4 Leslie Milk,4 Hannah P. Gideon,4 Mark Rodgers,4 Catherine Cochran,4 Kristi M. Guinn,5 David R. Sherman,5 Edwin Klein,6 Christopher Janssen,6 JoAnne L. Flynn,4,7 and Peter Andersen2

1Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA. 2Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark. 3Leonard Wood Memorial (LWM) Center for Leprosy Research, Cebu, Philippines. 4Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. 5Seattle Biomedical Research Institute and Department of Global Health, University of Washington, Seattle, Washington, USA. 6Division of Laboratory Animal Resources and 7Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Modified vaccinia Ankara (MVA)
- Poxvirus
- No replication in mammalian tissues
- Good T cell boosting vector
- Excellent safety record

M.tbc antigen 85A
- Mycolyl transferase
- Major target antigen
- Protective in small animals
- In all environmental mycobacteria
- Doesn’t interfere with new diagnostic tests

BCG - MVA85A regimen
Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial

Michele D Tameris*, Mark Hatherill*, Bernard S Landry, Thomas J Scriba, Margaret Ann Snowden, Stephen Lockhart, Jacqueline E Shea, J Bruce McClain, Gregory D Hussey, Willem A Hanekom, Hassan Mahomedt, Helen McShane†, and the MVA85A 020 Trial Study Team

- Birth 16-24 weeks
- BCG MVA85A or placebo
- 1-3 years

ADAPTIVE IMMUNITY
PBMC stored from ~2700 infants
Before immunisation and +28 days

© by author
Assays for immune correlates of risk analysis

- **Transcriptional analysis**
 - Illumina HT12 arrays

- **Functional Assays**
 - Mycobacterial growth inhibition assays

- **Immune Assays**
 - IFN-γ ELISPOT assays (UNS, PHA, BCG, 85A)
 - Antibodies on serum samples
 - Luminex on supernatants from above assays*

- **Cellular phenotyping**
 - Cell surface flow cytometry for lymphoid and myeloid cells
 - Markers of activation, exhaustion, T cell regulation*

- *Secondary assays to be performed on stored supernatant, RNA, frozen/fixed cells
T-cell activation and BCG IFN-γ ELISPOT are immune correlates in BCG-vaccinated infants

Measured in healthy infants up to 3 years before disease develops

Fletcher HA et al Nature Communications, 2016
Antibodies correlate with reduced risk of TB disease

Are they directly involved in protection or correlating with another immune parameter?

Fletcher HA et al Nature Communications, 2016
Why didn’t MVA85A protect?

• Immunogenicity ‘modest’
 – Immunogenicity 10-fold lower than in UK adults
 – Single vector not potent enough?

• Wrong route?

• Single antigen?

• Wrong population?
 – Immunogenicity lowest in infants
Future efficacy trials

• Focus on adolescents/adults
 – Responsible for most transmission
 – Candidate vaccines less immunogenic in infants

• Prevention of infection
 – Faster (therefore cheaper) trial as many more endpoints
 – BUT
 – Will a vaccine that prevents disease necessarily prevent infection?
An inhaled TB vaccine

• Route of immunisation = route of infection
• BCG does not reliably protect against pulmonary TB
• Mucosal immunisation can generate potent durable immune responses
• Specialised lymphoid tissue
• Inhalation is a common route of drug delivery
• Feasible
• Needle free
• Pain free
• Not a new idea!
Assessing the inhaled route in a human clinical trial

• Phase I trial
 – 22 BCG vaccinated adults randomised to 1×10^7 pfu MVA85A inhaled or ID
 – Randomised single blinded paired placebo design
 – Bronchoscopy day 7 BAL

• Primary and secondary outcome
 – Safety: local & systemic AEs, S_aO_2, spirometry, bronchoscopy
 – Systemic and mucosal cellular immunogenicity: blood and BAL
BAL Ag85A specific CD4+ T cell responses stronger after aerosol than i.d administration

\[P = 0.033 \]

\[P = 0.05 \]

\[P = 0.04 \]

\[P = 0.0151 \]

A: Aerosol
ID: Intradermal

Satti et al, Lancet Infect Dis 2014
Whole blood Ag85A CD4+ T cell responses at least as strong after aerosol than i.d administration

Satti et al, Lancet Infect Dis 2014
New *in-vitro* and *in vivo* models
Principles of the MGIT Assay

- 37°C + convection currents
- Oxygen-quenched fluorochrome → UV light
- Intensity of fluorescence ∝ mycobacterial growth
- Read-out = time taken to detection (TTD) in hours (converted to Net Growth using std curve and ctrl)
MGIA detects BCG vaccine effect in UK adults

Fletcher H et al. CVI 2013
MGIA detects BCG vaccine effect in mouse splenocytes

In vitro MGIT

In vivo M.tb Challenge

Marsay et al, Tuberculosis 2013
MGIA correlates with protection from *M. tb* challenge

Tanner R et al, unpublished
Human mycobacterial challenge models

• An effective vaccine against BCG should also protect against *M. tuberculosis*

• Does intradermal BCG ‘challenge’ provide a good model for aerosol *M. tuberculosis* challenge?
 – Validation in preclinical animal models
Pilot BCG challenge study

- BCG (SSI), 2×10^5 cfu/ 100 ul
- Route i.d
- Sampling: 4mm punch biopsy
- Biopsy at 1, 2, or 4 weeks post BCG

Minassian A et al, JID 2012
Aerosol BCG delivery

1. A more effective route of vaccination

2. A human mycobacterial challenge model:
 – For vaccine evaluation
 – To determine early innate events in the airway
Summary

- Progress in clinical testing of TB vaccine candidates
- Correlate samples from efficacy trials can yield important information
- Aerosol immunisation appears safe and highly immunogenic
- Evaluation in the target population is critical
- A MGIA and a human mycobacterial challenge model may be of utility in vaccine selection
Acknowledgements

Iman Satti
Stephanie Harris
Lisa Stockdale
Rachel Tanner
Matt O’Shea
Rachel Kandt
Magali Matsumiya
Zita Manjaly-Thomas
Sharon Sheehan
Jonny Peter
Ian Poulton
Mary Smith
Raquel Ramon-Lopez
Alison Lawrie
Alice Minhinnick
Paulo Bettencourt
Morven Wilkie
Sam Vermaak
Elena Stylianou
Ilaria Pepponi

• Oxford Centre for Respiratory Medicine
 – Henry Bettinson
• Jenner Transcriptomic Core Facility
 – Julius Muller
• LSHTM
 • Helen Fletcher
Acknowledgements

Bernard Landry
Barry Walker
Dave Hokey
Peggy Snowden
Tom Evans

CIDRI
Robert Wilkinson
Friedrich Thienermann
Katalin Wilkinson

Chu Le Dantec
Souleymane Mboup
Biraham Pierre Ndiaye
Tandakha Ndiaye Dieye
& The C-030 study team

OHSU, Oregon
David Lewinsohn
Debbie Lewinsohn
Gwendolyn Swarbrick

European Commission
Study participants

Tom Scriba
Michele Tameris
Willem Hanekom
Mark Hatherill
& 020 Study team

© by author