A multi-centre prospective evaluation of the new Filmarray meningitis/encephalitis panel for rapid PCR-based diagnostics

Cornelia Ottiger¹, Michael Naegele², Dominik Meinel³, Melanie Keller⁴, Sandra Mitrovic⁵, Katharina Rentsch⁶, Michael Oberle⁷, Christoph Noppen⁸, Raoul Christian Sutter⁹, Sarah Tschudin Sutter¹⁰, Vladimira Hinic¹¹, Olivier Dubuis¹², Dieter Burki¹³, Adrian Egli¹¹

¹Institute of Laboratory Medicine; Cantonal Hospital of Aarau; Medical Microbiology

²Clinical Microbiology

³Unispital Basel; Universitätsspital Basel; Klinische Mikrobiologie

⁴Cantonal Hospital Lucerne; Institute for Medical Microbiology

⁵University Hospital Basel; Clinical Chemistry

⁶Universitätsspital Basel; Department of Laboratory Medicine; Division of Clinical Chemistry

⁷Cantonal Hospital of Aarau; Institute for Laboratory Medicine; Medical Microbiology

⁸Genetics and Molecular Biology; Viollier AG

⁹Universitätsspital Basel; Intensivmedizin

¹⁰Universitätsspital Basel, Infektiologie und Spitalhygiene; Division of Infectious Diseases and Hospital Epidemiology

¹¹University Hospital of Basel; Clinical Microbiology

¹²Viollier AG

¹³Luzerner Kantonsspital; Institut für Medizinische Mikrobiologie
Background: Rapid treatment of meningitis and encephalitis improves clinical outcomes. However, culture-based identification of pathogens is time-consuming. PCR-panel diagnostics may overcome such shortcomings. Hence, we aimed to assess the performance of a new PCR-panel assay.

Material/methods: We compared the performance of the Filmarray ME (Biofire, bioMérieux) to routine diagnostic approaches for cerebrospinal fluids (CSF) in four diagnostic laboratories. Filmarray ME covers six bacteria, seven viruses, and one yeast.

We determined the detection limits by using serial dilutions of pathogen-spiked CSF, overall sensitivity and specificity, and compared turn-around times.

Results: Detection limits of the Filmarray system were 200, 3'700, 200, 10, 300, and 10 CFU/mL for \textit{S. pneumoniae}, \textit{S. agalactiae}, \textit{L. monocytogenes}, \textit{N. meningitidis}, \textit{E. coli} K1, and \textit{C. neoformans} respectively; and 63, 79, and 120 copies/mL for HSV-1, HSV-2, and VZV, respectively.

In total, 195 CSF samples from clinical routine were tested. 136 samples showed concordant negative results. 59 samples were tested positive by the Filmarray ME, of which 51 pathogens could be confirmed with routine diagnostics. The sensitivity and specificity was 100% and 94.4%, respectively (see Table 1). In 5/8 cases additional diagnostic testing (e.g. target-specific PCR) or patient's history confirmed the Filmarray ME result (e.g. bacteraemia with \textit{H. influenzae}). 3/8 could not be confirmed by additional diagnostics including one case of HHV6, \textit{H. influenzae} and \textit{S. pneumoniae} each. Median time to bacterial identification was 3.1h (Filmarray ME) vs. 25.2h (culture-based, \textit{p}<0.0001).

Conclusions: The Filmarray ME panel provides sensitive and rapid detection of common pathogens associated with community acquired meningitis and encephalitis.

<table>
<thead>
<tr>
<th>Routine assay</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filmarray ME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>51</td>
<td>8*</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>195</td>
<td></td>
</tr>
</tbody>
</table>

*5/8 samples could be confirmed as true positive with further testing.

Table 1. Comparison of detection rates of the Filmarray ME versus routine diagnostic assessment.