Erradication of P. aeruginosa biofilm in endotracheal tubes based on lock therapy: results from an in-vitro study

Maria Jesus Perez-Granda1, María Latorre2, Beatriz Alonso3, Raquel Cruces4, Javier Hortal3, Rafael Samaniego3, Emilio Bouza Santiago4, María Guembe*4

1Hospital Gregorio Marañon; Microbiology and Infectious Diseases
2Univerisidad Complutense de Madrid
3Hospital General Universitario Gregorio Marañón
4Hospital General Universitario Gregorio Marañon, Instituto de Investigación Sanitaria Gregorio Marañón; Clinical Microbiology and Infectious Diseases

Background: Bacterial biofilm is a key element in the development of Ventilator Associated Pneumonia (VAP) and several strategies for its prevention and treatment are mainly targeted at the elimination of internal surface biofilm of the endotracheal tubes (ETT). Data regarding the efficacy of applying antibiotic substances directly to the external surface of the subglottic space are scarce. Our objective was to assess the efficacy of antibiotic lock therapy (ALT) applied at the subglottic space of ETT to erradicate Pseudomonas aeruginosa biofilm in an artificially created in vitro bench top model.

Material/methods: We applied a 2-hours ALT to a 72h-mature P. aeruginosa biofilm in ETT using two different models: single dose (SD) and 5-days therapy (5D). We used sterile saline as the positive control (SLT). We compared cfu/ml and percentage of live cells between ALT and SLT models using conventional culture after sonication and microscopy (confocal laser scanning microscopy and scanning electron microscopy). ALT was the solution used for selective digestive decontamination (SDD) therapy composed of nystatin 2.6 MUI, tobramycin 15.6 mg/ml, and colimycin 13 mg/ml.

Results: The median (IQR) cfu counts/ml and percentage of live cells between the SD-ALT and SD-SLT groups was, respectively: 3.12 x 10^5 (9.7 x 10^4-0) vs. 8.16 x 10^7 (7.0 x 10^7-0), p = 0.05; and 53.2 (50.9-57.2) vs. 91.5 (87.3-93.9), p <0.001. The median (IQR) cfu counts/ml and percentage of live cells between the 5D-ALT and 5D-SLT groups was, respectively: 0 (0-0) vs. 3.2 x 10^7 (2.32 x 10^7-0), p = 0.03; and 40.6 (36.6-60.0) vs. 90.3 (84.8-93.9), p <0.001 (figure).
Conclusions: Ours is the first in vitro study which demonstrated by culture and microscopy that *P. aeruginosa* biofilm in ETT can be significantly eradicated after performing 5-day ALT with SDD solution in the subglottic space of the artificial model. Future studies are needed to further evaluate its efficacy combined with SDD as a prophylactic measure of VAP in patients under mechanical ventilation.