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Development and validation of a 
prediction rule
• What are the aims? Do we need such a prediction rule?
• Derivation group
• How to derive the rule: which model to use
• Internal validation
• External validation
• …a few examples
• Conclusions
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What are the aims? Do we need such a 
prediction rule?
• A perceived problem in decision making. 
• For local or universal use?
• A quantifiable problem:

• How often is a wrong decision made?
• What measures are disturbed and to what extent?
• How are patients’ outcomes affected?

• Quantify and  provide baseline data: for comparison (historical 
comparisons are weak but might be important to understand 
trends).

• Examples:
• Percentage of true positive blood cultures 3-5% (emergency wards); 

12-15% (departments of medicine).
• Pneumonia: huge variability in practice.
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What are our needs?
• We should consider what is the purpose of the prediction 

model.
• To turn it into a true decision aid we need a target function to 

optimize: a decision analytic approach.

• Examples:
• Bacteremia: a large enough group of patients with almost no 

true positive blood cultures (i.e. high specificity and good 
calibration).

• Pneumonia: 
• Define a group with a very low probability of a bad outcome and thus 

can be managed as outpatients.
• Define a group with a high probability of a bad outcome (an outcome 

amenable to intervention) that should be admitted to the ICU.
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Derivation group
• Protocol: define:

• Population of interest (inclusion and exclusion criteria, how 
detected)

• Candidate predictors
• Do they fit the clinical workflow?
• Biological/clinical plausibility? 

• Outcomes

• Prospective vs retrospective collection of data:
• Prospective is always preferable.
• Watch out for external validity.
• Rare outcomes might necessitate retrospective collection.ESCMID Online Lectu
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Choice of model:  Self-learning algorithms
• ‘Black boxes’ that marry a combination of predictors to an 

outcome.
• Demand large and quite complete databases.

• Research data bases are usually small and incomplete.
• Administrative databases are large but were not built for research.

• High connectivity (many degrees of freedom) leads to 
over-matching.

• Varying (usually low) insight into mechanisms. 
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Choice of model: Statistical models, usually 
logistic regression
• Risk of overfitting.
• Needs statistical know-how but also an excellent grasp of 

the biological/clinical domain.
• Difficult to update.
• Lacks several of the advantages of causal models.

• But overall we have the most experience with this kind of 
modelling.
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Causal models - advantages
• Modeling of complex situations
• Allows combination of knowledge and data, and 
of data from different sources

• Allows explicit differentiation between local and 
universal factors, and thus makes calibration 
easier

• Decision – analytic approaches integral to 
some systems (influence diagram)

• Missing information handled by the model itself
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Choice of model: Causal models
• Examples: Structural equation modelling, causal 

probabilistic networks.
• Use knowledge to reduce the connectivity of the  model.
• The differentiation between causes and effects allows for 

better use of the variables. 
• Allows explicit differentiation between local and universal 

factors; and between fixed and factors changing over 
time; thus makes temporal and spatial calibration easier.

• Transparent   -as opposed to ‘black box’.
• Allows the modelling of complex systems.ESCMID Online Lectu
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Validation:
• Calibration: (do n of 100 patients with a risk prediction of n% 

have the outcome across all the range of the predictor?)
• Discrimination: are my predictions good enough for a specific 

patient?
• Does it do what I need? 
• Do I improve a target function by applying the model? 
• Do I improve an outcome by applying the model?

For formal ways to assess the performance of prediction models: 
Epidemiology. 2010 Jan; 21(1): 128–138.
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Internal validation:
• The model is validated in the same database from which it 

was derived. 
• Boot-strapping techniques.
• Split the database into derivation and (internal) validation 

set from the beginning: in space or in time. 
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External validation
• Local or universal?
• In another place (multiple places even better) and (by 

necessity) another time:
• Calibration: (do n of 100 patients with a risk prediction of n% have 

the outcome across all the range of the predictor?)
• Discrimination: are my predictions good enough for a specific 

patient?
• Does it do what I need? 
• Do I improve a target function by applying the model? 
• Do I improve an outcome by applying the model?

How do I test whether outcomes were improved?
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Designs of tests
Patient 

randomisation
Cluster 

randomisation
Before-after

Educative

Interacts with the 
medical setting
Good answer: Partial answer Full answer Full answer?

Removes bias Full Partial Badly

Publication and 
impact

High Partial Low

Cost High Lower? Lower

Patient consent needed probably ??

No of participants highest
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Implementation (in a trial or in practice)
Electronic patient file:
• Draw the data and calculate the score automatically.

• Take note that data from electronic files do not always have the 
same meaning as the variables that were collected.

• Implement the results semi-automatically.
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If unsuccessful, what went wrong?
• Included risk factors that are relevant only in some 

locations.
• The baseline incidence of the outcome is very different.
• Doesn’t fit into the workflow.
• Not accepted by the users (for some reasons).

ESCMID Online Lectu
re Library 

© by a
uthor 



Predicting bacteraemia in validated models—a 
systematic review (Clin Microbiol Infect 2015; 21: 295)

Inclusion criteria for studies:
• Validated (either internally or externally)
• Studies that were able to define groups with low or high 

probabilities for bacteraemia (arbitrarily defined as below 
3% or above 30%).

• 21 studies were excluded because they did not have any 
form of validation.

• 15 studies included ( total of 59 276 patients).
• 12 performed external validation.
• 7 models were validated in a different hospital
• In 5 the model performed well.
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Predicting bacteraemia in validated models—a 
systematic review (Clin Microbiol Infect 2015; 21: 295)

We contacted the authors of these 5 studies. None of them 
were implemented in clinical practice.
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Risk stratification: independent cohorts: TREAT 
performance

 Cohort 1 Cohort 2 

 N  Bacteremia 

(%) 

Contamination 

(%) 

N Bacteremia 

(%) 

Contamination 

(%) 

Low-risk 

group 

123 3 (2.4) 5 (4.1) 300 4 (1.3) 9 (3.0) 

Intermediate-

risk group 

483 62 (12.8) 12 (2.5) 1139 150 (13.2) 61 (5.4) 

High-risk 

group 

184 55 (29.9) 10 (5.4) 285 80 (28.1) 16 (5.6) 
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TREAT module for predicting bacteremia 
is not used.
• It was not accepted by the hospital Antibiotic Committee: 

“The information in blood cultures goes beyond negative/ 
positive. We are not convinced.”

• TREAT uses lab values: blood is drawn for blood culture 
with the first venipuncture. 
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Value of severity scales in predicting mortality from 
community-acquired pneumonia: systematic review 
(Thorax. 2010;65:884)

• Included prospective studies that reported mortality at 4-8 
weeks in patients with radiographically-confirmed 
community-acquired pneumonia.

• Test performance was evaluated based on 'higher risk' 
categories.

• 23 studies involving 22,753 participants (average 
mortality 7.4%) were retrieved.

• Negative predictive values for mortality were similar 
among the tests, ranging from 0.94 (CRB-65) to 0.98 
(PSI).ESCMID Online Lectu

re Library 

© by a
uthor 



A non-infectious example
• CHA2DS2-VASc and CHADS2 are in frequent use. 
• The scores function no better than the ones we have 

reviewed.
• ??
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Conclusions:
• We can draw a few helpful guidelines for assembling a 

clinical prediction model:
• Ask whether the model in needed and what should it do.
• Consider validation of an existing model instead of derivating your 

own.
• Define carefully your derivation group.
• Choose your model, but examine causal paths.
• Test the model in an independent cohort.
• Test its performance in clinical practice: does it change 

management or outcomes? Choose your study design.
• Examine how it fits into the workflow.
• Integration into electronic patient file.
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Questions for you:
• Why these efforts are not more successful? 
• Should they be used more often?
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Thank you for your attention.
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