PREDICTION MODELS

Leonard Leibovic

Seville, Oct 2016
Development and validation of a prediction rule

- What are the aims? Do we need such a prediction rule?
- Derivation group
- How to derive the rule: which model to use
- Internal validation
- External validation
- ...a few examples
- Conclusions
What are the aims? Do we need such a prediction rule?

- A perceived problem in decision making.
- For local or universal use?
- A quantifiable problem:
 - How often is a wrong decision made?
 - What measures are disturbed and to what extent?
 - How are patients’ outcomes affected?
- Quantify and provide baseline data: for comparison (historical comparisons are weak but might be important to understand trends).

Examples:
- Percentage of true positive blood cultures 3-5% (emergency wards); 12-15% (departments of medicine).
- Pneumonia: huge variability in practice.
What are our needs?

• We should consider what is the purpose of the prediction model.
• To turn it into a true decision aid we need a target function to optimize: a decision analytic approach.

• Examples:
• Bacteremia: a large enough group of patients with almost no true positive blood cultures (i.e. high specificity and good calibration).
• Pneumonia:
 • Define a group with a very low probability of a bad outcome and thus can be managed as outpatients.
 • Define a group with a high probability of a bad outcome (an outcome amenable to intervention) that should be admitted to the ICU.
Derivation group

- Protocol: define:
 - Population of interest (inclusion and exclusion criteria, how detected)
 - Candidate predictors
 - Do they fit the clinical workflow?
 - Biological/clinical plausibility?
 - Outcomes

- Prospective vs retrospective collection of data:
 - Prospective is always preferable.
 - Watch out for external validity.
 - Rare outcomes might necessitate retrospective collection.
Choice of model: Self-learning algorithms

- ‘Black boxes’ that marry a combination of predictors to an outcome.
- Demand large and quite complete databases.
 - Research data bases are usually small and incomplete.
 - Administrative databases are large but were not built for research.
- High connectivity (many degrees of freedom) leads to over-matching.
- Varying (usually low) insight into mechanisms.
Choice of model: **Statistical models, usually logistic regression**

- Risk of overfitting.
- Needs statistical know-how but also an excellent grasp of the biological/clinical domain.
- Difficult to update.
- Lacks several of the advantages of causal models.

- But overall we have the most experience with this kind of modelling.
Causal models - advantages

- Modeling of complex situations
- Allows combination of knowledge and data, and of data from different sources
- Allows explicit differentiation between local and universal factors, and thus makes calibration easier
- Decision – analytic approaches integral to some systems (influence diagram)
- Missing information handled by the model itself
Choice of model: Causal models

• Examples: Structural equation modelling, causal probabilistic networks.
• Use knowledge to reduce the connectivity of the model.
• The differentiation between causes and effects allows for better use of the variables.
• Allows explicit differentiation between local and universal factors; and between fixed and factors changing over time; thus makes temporal and spatial calibration easier.
• Transparent - as opposed to 'black box'.
• Allows the modelling of complex systems.
Validation:

• Calibration: (do n of 100 patients with a risk prediction of n% have the outcome across all the range of the predictor?)
• Discrimination: are my predictions good enough for a specific patient?
• Does it do what I need?
• Do I improve a target function by applying the model?
• Do I improve an outcome by applying the model?

Internal validation:

- The model is validated in the same database from which it was derived.
- Boot-strapping techniques.
- Split the database into derivation and (internal) validation set from the beginning: in space or in time.
External validation

• Local or universal?
• In another place (multiple places even better) and (by necessity) another time:
 • Calibration: (do n of 100 patients with a risk prediction of n% have the outcome across all the range of the predictor?)
 • Discrimination: are my predictions good enough for a specific patient?
 • Does it do what I need?
• Do I improve a target function by applying the model?
• Do I improve an outcome by applying the model?

How do I test whether outcomes were improved?
<table>
<thead>
<tr>
<th></th>
<th>Patient randomisation</th>
<th>Cluster randomisation</th>
<th>Before-after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interacts with the medical setting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good answer:</td>
<td>Partial answer</td>
<td>Full answer</td>
<td>Full answer?</td>
</tr>
<tr>
<td>Removes bias</td>
<td>Full</td>
<td>Partial</td>
<td>Badly</td>
</tr>
<tr>
<td>Publication and impact</td>
<td>High</td>
<td>Partial</td>
<td>Low</td>
</tr>
<tr>
<td>Cost</td>
<td>High</td>
<td>Lower?</td>
<td>Lower</td>
</tr>
<tr>
<td>Patient consent</td>
<td>needed</td>
<td>probably</td>
<td>??</td>
</tr>
<tr>
<td>No of participants</td>
<td></td>
<td>highest</td>
<td></td>
</tr>
</tbody>
</table>
Implementation (in a trial or in practice)

Electronic patient file:

• Draw the data and calculate the score automatically.
 • Take note that data from electronic files do not always have the same meaning as the variables that were collected.
• Implement the results semi-automatically.
If unsuccessful, what went wrong?

• Included risk factors that are relevant only in some locations.
• The baseline incidence of the outcome is very different.
• Doesn’t fit into the workflow.
• Not accepted by the users (for some reasons).
Predicting bacteraemia in validated models—a systematic review (Clin Microbiol Infect 2015; 21: 295)

Inclusion criteria for studies:

- Validated (either internally or externally)
- Studies that were able to define groups with low or high probabilities for bacteraemia (arbitrarily defined as below 3% or above 30%).

- 21 studies were excluded because they did not have any form of validation.
- 15 studies included (total of 59,276 patients).
- 12 performed external validation.
- 7 models were validated in a different hospital
- In 5 the model performed well.
Predicting bacteraemia in validated models—a systematic review (Clin Microbiol Infect 2015; 21: 295)

We contacted the authors of these 5 studies. None of them were implemented in clinical practice.
Risk stratification: independent cohorts: TREAT performance

<table>
<thead>
<tr>
<th></th>
<th>Cohort 1</th>
<th></th>
<th>Cohort 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Bacteremia (%)</td>
<td>Contamination (%)</td>
<td>N</td>
</tr>
<tr>
<td>Low-risk group</td>
<td>123</td>
<td>3 (2.4)</td>
<td>5 (4.1)</td>
<td>300</td>
</tr>
<tr>
<td>Intermediate-risk group</td>
<td>483</td>
<td>62 (12.8)</td>
<td>12 (2.5)</td>
<td>1139</td>
</tr>
<tr>
<td>High-risk group</td>
<td>184</td>
<td>55 (29.9)</td>
<td>10 (5.4)</td>
<td>285</td>
</tr>
</tbody>
</table>
TREAT module for predicting bacteremia is not used.

- It was not accepted by the hospital Antibiotic Committee: “The information in blood cultures goes beyond negative/positive. We are not convinced.”
- TREAT uses lab values: blood is drawn for blood culture with the first venipuncture.
Value of severity scales in predicting mortality from community-acquired pneumonia: systematic review (Thorax. 2010;65:884)

- Included prospective studies that reported mortality at 4-8 weeks in patients with radiographically-confirmed community-acquired pneumonia.
- Test performance was evaluated based on 'higher risk' categories.
- 23 studies involving 22,753 participants (average mortality 7.4%) were retrieved.
- Negative predictive values for mortality were similar among the tests, ranging from 0.94 (CRB-65) to 0.98 (PSI).
A non-infectious example

- CHA2DS2-VASc and CHADS2 are in frequent use.
- The scores function no better than the ones we have reviewed.
- ??
Conclusions:

• We can draw a few helpful guidelines for assembling a clinical prediction model:
 • Ask whether the model in needed and what should it do.
 • Consider validation of an existing model instead of derivating your own.
 • Define carefully your derivation group.
 • Choose your model, but examine causal paths.
 • Test the model in an independent cohort.
 • Test its performance in clinical practice: does it change management or outcomes? Choose your study design.
 • Examine how it fits into the workflow.
 • Integration into electronic patient file.
Questions for you:

• Why these efforts are not more successful?
• Should they be used more often?
Thank you for your attention.