Multispecies biofilms in chronic infections: clinical impact and treatment considerations

Thomas Bjarnsholt
Professor, DMSc & PhD
Are biofilms always bad?

A. Yes
B. No
Everywhere a liquid flows across a surface...
In and on the human body

THE HUMAN

Bacteria, fungi, and viruses outnumber human cells in the body by a factor of 10 to one. The microbes synthesize key nutrients, fend off pathogens and impact everything from weight gain to perhaps even brain development. The Human Microbiome Project is doing a census of the microbes and sequencing the genomes of many. The total body count is not in but it's believed over 1,000 different species live in and on the body.

25 SPECIES
in the stomach include:
- Helicobacter pylori
- Streptococcus thermophilus

500-1,000 SPECIES
in the intestines include:
- Lactobacillus casei
- Lactobacillus reuteri
- Lactobacillus gasseri
- Escherichia coli
- Bacteroides fragilis
- Bacteroides thetaiotaomicron
- Lactobacillus rhamnusus
- Clostridium difficile

600+ SPECIES
in the mouth, pharynx and respiratory system include:
- Streptococcus viridans
- Neisseria sicca
- Candida albicans
- Streptococcus salivarrius

1,000 SPECIES
in the skin include:
- Pityrosporum ovale
- Staphylococcus epidermidis
- Corynebacterium jeikeium
- Trichosporon
- Staphylococcus haemolyticus

60 SPECIES
in the urogenital tract include:
- Ureaplasma parvum
- Corynebacterium aurimucosum

SOURCES: NATIONAL INSTITUTES OF HEALTH, SCIENTIFIC AMERICAN, HUMAN MICROBIOME PROJECT

Dean Tweed • POSTMEDIA NEWS / IMAGE: fotolia
In the wrong place in the human body

Voice Prosthesis

Caries

Catheter
The problem
Planktonic vs. biofilm

- Study from 1956.
- Injected 7,500,000 CFU *S. aureus* in skin of human volunteers = only 50% infected, all resolved
- < 100 CFU onto an implant in humans = 100% infected, did not resolve
- Implants or dead tissue ↑ virulence over 75,000 fold.

Significance of Biofilm infections

- Chronic long-term infections
- Frequently recalcitrant to antibiotic treatment
- Resistant to host defences, such as phagocytosis and killing
- Difficult to treat, in medical implant infections, the only cure may be removal
- Difficult to diagnose
The clinical biofilm

- What?
- Where?
- How to sample?
- How to diagnose?
- What to treat?
Biofilms in chronic wounds

Bjarnsholt et al; Wound Repair and Regeneration, 2008 Jan-Feb;16(1):2-10.
Sampling

Correlates with the findings by Gjødsbøl et al.

- Wounds in total: 22
- Wounds with bacteria (culturing): 19
- Wounds with aggregates (FISH)*: 13
- Wounds with S. aureus (culturing): 12
- Wounds with S. aureus (FISH): 2
- Wounds with P. aeruginosa (culturing): 5
- Wounds with P. aeruginosa (FISH): 9

p<0.02
p<0.0001

Kirketerp-Møller.... and Bjarnsholt; The distribution, organization and ecology of bacteria in chronic wounds; J Clin Microbiol. 2008 Aug;46(8):2717-22
Sampling

Are bacteria in biofilms culture negative?

<table>
<thead>
<tr>
<th>Wounds</th>
<th>Number</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wounds in total</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Wounds with bacteria (culturing)</td>
<td>19</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Wounds with aggregates (FISH)</td>
<td>13</td>
<td>p<0.02</td>
</tr>
<tr>
<td>Wounds with S. aureas (culturing)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Wounds with S. aureas (FISH)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Wounds with P. aeruginosa (culturing)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Wounds with P. aeruginosa (FISH)</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Correlates with the findings by Gjødsbøl et al.

Kirketerp-Møller.... and Bjarnsholt; The distribution, organization and ecology of bacteria in chronic wounds; J Clin Microbiol. 2008 Aug;46(8):2717-22
Are bacteria in biofilms unculturable?

A. Yes
B. No
NO, but they have to be “sampled” to enable growth
Multi-species biofilms vs. Multi-species infections

True for 2 out of 13 wounds
Mono-species biofilms vs. Multi-species infections

True for 11 out of 13 wounds
Cystisk fibrose

1-3 pathogens per lung
Where?

McConoughey et al. 2014
Distribution of species

S. aureus P. aeruginosa

Heterogeneous distribution of bacteria- Chronic wounds

qPCR *Pseudomonas aeruginosa*

<table>
<thead>
<tr>
<th>Position</th>
<th>Wound 1</th>
<th>Wound 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>510±18%</td>
<td>920±9%</td>
</tr>
<tr>
<td>3</td>
<td>No sample</td>
<td>300±13%</td>
</tr>
<tr>
<td>6</td>
<td>760±7%</td>
<td>8200±8%</td>
</tr>
<tr>
<td>9</td>
<td>47±9%</td>
<td>800±10%</td>
</tr>
<tr>
<td>12</td>
<td>280±3%</td>
<td>15±5%</td>
</tr>
</tbody>
</table>

Picture from homepage of Montana State University
The *in vivo* Biofilm

- No mushrooms
- Additional layer of host material
- Host defense/inflammation
- Heterogeneous distribution
- Not surface dependable

Bjarnsholt et al, Trends in Microbiology, Trends Microbiol. 2013 Sep;21(9):466-74
Two ongoing projects

Herniation
Unibac-TXR, Pacnes-FITC, DAPI

Breast implant tissue with anaplastic large cell lymphoma
Unibac-TXR, DAPI
The opportunity!

- Average 5.4 species per wound
 Thomsen...Bjarnsholt et al (WRR 2010)
- Average 3 species per CF lung
 Rudkjøbing....Bjarnsholt et al (JCM 2012)
- Many species together in the environment

Dental biofilm

- Intestine
- Soil
- Submerged surfaces
- Pipelines

Okabe et al; APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Nov. 1999, p. 5107–5116
Model biofilm for studies of interspecies interactions

1 Pseudomonas lutea
2 Stenotrophomonas rhizophila
3 Xanthomonas retroflexus
4 Ochrobactrum rhizosphaerae
5 Microbacterium oxydans
6 Arthrobacter nitroguajacolicus
7 Paenibacillus amylolyticus

- Single species and combinations of 4 species
- Quantification by use of crystal violet assay (Calgary device)

Biofilm formation of single- and four species

2357 - more than 300% increase in biofilm biomass

Ren et al. 2015 ISME J.
How does a chronic infection initiate?

Infections are not ecosystems!
No synergism
ESCMID GUIDELINES

ESCMID* guideline for the diagnosis and treatment of biofilm infections
2014

N. Høiby1,2, T. Bjarnsholt1,2, C. Moser1, G. L. Bassi3, T. Coenye4, G. Donelli5, L. Hall-Stoodley6, V. Hola7, C. Imbert8, K. Kirketerp-Møller9, D. Lebeaux10, A. Oliver11, A. J. Ullmann12 and C. Williams13, for the ESCMID Study Group for Biofilms (ESGB) and Consulting External Expert Werner Zimmerli14

• How to study chronic infections
 – Multispecies infections or multispecies biofilms?
Acknowledgments

University of Copenhagen:
- Maria Alhede
- Kasper N Kragh
- Steffen R Eickhardt-Sørensen
- Anne K Nielsen
- Stephanie G Crone
- Majken Sønderholm
- Blaine Fritz
- Camilla Stavnsbjerg
- Marie Thaysen
- Lasse Kvich
- Lene Bay
- Tim Holm Jakobsen

Rigshospitalet:
- Niels Høiby
- Peter Østrup Jensen
- Claus Moser
- Kim Thomsen
- Lars Christoffersen
- Michael Tvede
- Claus B Andersen
- Preben Homøe

Others:
- Klaus Kirketerp-Møller
- Lise H Christensen
- Trine Rolighed Thomsen
- Claus Sternberg
- Christine R Hansen
- Tanja Pressler
- Mark Shirtliff
- Claus Manniche
- Benny Dahl
- Anders Odgaard
- Søren Orth-Nissen

Michael Givskov, Klaus Qvortrup
- Oana Ciofu, Søren Sørensen
- Michael Kühl, Mette Burmølle
- Hans Petter Hougen, Henrik Elvang Jensen
- Louise Kruse Johansen
Funding Sources

- Human Frontier Science project
- Capital Region Research Foundation for Health Research
- Novo Nordisk A/S
- Contura
- AdvanDx Inc.
Would you like to learn about Biofilms in chronic infections?

Sign up for our biofilm online courses at:

• www.biofilmcourse.ku.dk
• www.coursera.org/course/bacteria