Infection on neurological implanted devices

Challenging complex infections for ID physicians

Anna Conen, MD MSc
Deputy Head Physician
Division of Infectious Diseases and Hospital Hygiene
Kantonsspital Aarau, Switzerland
Disclosures

Received travel grants from Gilead, Merck Sharp Dohme, ViiV Healthcare, Bristol-Myers Squibb and Janssen.
Outline

- Diagnosis of implant-associated infections
- Treatment concepts of implant-associated infections
- Specific infections associated with the following implants:
Risk of implant-associated infections

<table>
<thead>
<tr>
<th>Device</th>
<th>No. inserted in the US, per year</th>
<th>Infection rate, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture fixation devices</td>
<td>2,000,000</td>
<td>5–10</td>
</tr>
<tr>
<td>Dental implants</td>
<td>1,000,000</td>
<td>5–10</td>
</tr>
<tr>
<td>Joint prostheses</td>
<td>600,000</td>
<td>1–3</td>
</tr>
<tr>
<td>Neurosurgical implants</td>
<td>450,000</td>
<td>3–15</td>
</tr>
<tr>
<td>Cardiac pacemakers</td>
<td>300,000</td>
<td>1–7</td>
</tr>
<tr>
<td>Mammary implants</td>
<td>130,000</td>
<td>1–2</td>
</tr>
<tr>
<td>Mechanical heart valves</td>
<td>85,000</td>
<td>1–3</td>
</tr>
<tr>
<td>Penile implants</td>
<td>15,000</td>
<td>1–3</td>
</tr>
<tr>
<td>Heart assist devices</td>
<td>700</td>
<td>25–50</td>
</tr>
</tbody>
</table>
Concept and diagnosis of biofilm

Biofilm
- Bacteria adhere to implant surface
- Embed in a matrix
- In stationary growth phase
- Slowly replicate

Sonication
- Sonication of implants*:
 - Detachment of biofilm
- Sonication fluid plated on culture media

*Cranioplasty, shunts, screws, plates, stimulators, etc.

Characteristics of implant-associated infections

- **Route of infection: Exogenous inoculation**
 - Preoperative (skin defects, open wounds)
 - Intraoperative (100 microorganisms sufficient, from wound border)
 - Postoperative (first 2-4 days of wound healing, persistent wound drainage)

- **Discrepancy between good in vitro susceptibility and poor clinical and bacteriological outcome in vivo**
 - Routine susceptibility testing is performed on growing and planktonic microorganisms

Classification of infections

Extrapolation from other implant-associated infections

<table>
<thead>
<tr>
<th>Early infection</th>
<th>Delayed / late infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 4 weeks after implantation</td>
<td>> 4 weeks after implantation</td>
</tr>
<tr>
<td>Clinical presentation: acute</td>
<td>Clinical presentation: low-grade</td>
</tr>
<tr>
<td>Fever, local signs if infection</td>
<td>Persistent wound drainage, fistula</td>
</tr>
<tr>
<td>“Immature” biofilm</td>
<td>“Mature” biofilm</td>
</tr>
<tr>
<td>Debridement and implant retention</td>
<td>Removal or exchange of the implant necessary</td>
</tr>
<tr>
<td>possible</td>
<td>(1- or 2-stage exchange)</td>
</tr>
<tr>
<td>Anti-biofilm antibiotic treatment for 12 weeks</td>
<td>Anti-biofilm antibiotic treatment for 12 weeks</td>
</tr>
<tr>
<td>- Usually 2 weeks i.v.</td>
<td>- Usually 2 weeks i.v.</td>
</tr>
<tr>
<td>- Then 10 weeks oral treatment</td>
<td>- Then 10 weeks oral treatment</td>
</tr>
</tbody>
</table>

Treatment concept
 Implemented from other implant-associated infections

Surgery
- Debridement
- Implant retention or change
- Soft tissue coverage

Anti-biofilm treatment
- Rifampin combinations against staphylococci
- Fluoroquinolones against gram-negative bacilli

Microorganism known, susceptible to anti-biofilm antibiotics

- **Implant debridement and retention in early infection**
 - 12 weeks anti-biofilm antibiotic therapy*

- **One-stage exchange of implant**
 - 12 weeks anti-biofilm antibiotic therapy*

- **Two-stage exchange of implant (short interval, 2 weeks without implant)**
 - 12 weeks anti-biofilm antibiotics*

Microorganism known, NOT susceptible to anti-biofilm antibiotics

- **Two-stage exchange of implant (long interval, 6-8 weeks without implant)**
 - 6 weeks antibiotic therapy

- **Implant retention and lifelong antibiotic suppression therapy**

* Usually 2 weeks i.v. and 10 weeks oral treatment

Adapted from Zimmerli W. *N Engl J Med* 2004; 351:1645-1654
Post-craniotomy and cranioplasty-associated infections
Post-craniotomy infections

- **Indication:**
 - Brain biopsy, drain brain abscesses

- **Infection rate:** 0.5-7%
 - Epidural > intracerebral > subdural

- **Interval between craniotomy and postoperative infection**
 - Median 1.5 months (range 4 days - 5 years)

- **Most common pathogens**
 - *S. aureus*, coagulase-negative staphylococci, gram-negative bacilli

Symptom

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Total n=50 patients</th>
<th>Number of patients n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mental status change</td>
<td>18 (36)</td>
<td></td>
</tr>
<tr>
<td>Purulent wound drainage</td>
<td>17 (34)</td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>11 (22)</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>10 (20)</td>
<td></td>
</tr>
<tr>
<td>Swelling</td>
<td>7 (14)</td>
<td></td>
</tr>
<tr>
<td>Seizure</td>
<td>2 (4)</td>
<td></td>
</tr>
</tbody>
</table>

Dashti S. *Neurosurg Focus* 2008;24(6):E10
Post-craniotomy infections: Risk factors

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>OR (95% Confidence Interval)</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>External CSF drainage</td>
<td>7.2 (2.9-18.1)</td>
<td>Sneb</td>
</tr>
<tr>
<td>Preoperative chemotherapy</td>
<td>5.2 (2.3-11.6)</td>
<td>Lieber</td>
</tr>
<tr>
<td>Postoperative CSF leakage</td>
<td>3.5 (1.4-8.5)</td>
<td>Chiang</td>
</tr>
<tr>
<td>Wound class 2</td>
<td>3.2 (1.2-8.1)</td>
<td>Lieber</td>
</tr>
<tr>
<td>Wound class 3</td>
<td>8.0 (2.6-24.5)</td>
<td>Lieber</td>
</tr>
<tr>
<td>Morbid obesity (BMI ≥40 kg/m²)</td>
<td>3.1 (1.4-6.8)</td>
<td>Lieber</td>
</tr>
<tr>
<td>Emergency operation</td>
<td>3.0 (1.1-8.1)</td>
<td>Sneb</td>
</tr>
<tr>
<td>Respiratory failure</td>
<td>3.0 (1.1-8.2)</td>
<td>Sneb</td>
</tr>
<tr>
<td>Prior neurosurgical operation (<30 days)</td>
<td>2.3 (1.1-5.0)</td>
<td>Lieber</td>
</tr>
<tr>
<td>Preoperative hospitalization ≥1 day</td>
<td>1.9 (1.1-3.3)</td>
<td>Chiang</td>
</tr>
<tr>
<td>Chronic steroid use</td>
<td>1.9 (1.0-3.4)</td>
<td>Lieber</td>
</tr>
<tr>
<td>Operation duration (per hour increase)</td>
<td>1.2 (1.1-1.3)</td>
<td>Lieber</td>
</tr>
</tbody>
</table>
Cranioplasty-associated infections

- **Indications for craniectomy**
 - Decompression (trauma, intracerebral hemorrhage)
 - Infected bone flap

- **Cranioplasty**
 - Bone flap reuse (risk: aseptic bone necrosis)
 - PEEK*, PMMA*, titanium or other foreign material

- **Infection rate:** 1-25.9%
 - Pathogens: *S. aureus*, coagulase-negative staphylococci, gram-negative bacilli

- **Average time to cranioplasty:** 7.3 months (range 1-40)
 - Disfiguring deformity
 - Lack of brain protection
 - Hydrocephalus (altered CSF dynamics)

*PEEK: Polyether ether ketone. PMMA: Poly methyl methacrylate

Effect of material and early surgery on cranioplasty-associated infections

Systematic review reveals that

- The material used for the cranioplasty (autologous vs. allogeneic) has no effect on the infection rate

- The time when the cranioplasty is performed (early <3 months vs. late >3 months after craniectomy) has no effect on the infection rate
Distinction between “superficial” and “deep wound” infection is not possible

- **Reasoning**
 - Compartments are in contiguity after craniotomy
 - Any craniotomy infection should be considered as deep and bone flap/cranioplasty-associated

- **Requires surgical revision (debridement)**
 - Evacuate pus and infected tissue
 - Remove infected bone flap for debridement, remove/replace implants
Post-craniotomy and cranioplasty-associated infections: Treatment recommendation

- **Standard management**
 - Delayed cranioplasty (weeks to months)
 - With foreign material once the infection is cleared

- **New concept: anti-biofilm therapy in infected implants**
 - Immediate cranioplasty in low-grade infection (1-stage)
 - Short implant-free interval of 2 weeks (2-stage)
 - Bone flap reuse, PEEK**, PMMA** or other
 - Anti-biofilm antibiotic treatment for 12 weeks

→ Better cosmetic results
→ Protection of underlying brain

*Susceptibility to anti-biofilm treatment given
**PEEK: Polyether ether ketone. PMMA: Poly methyl methacrylate
CSF shunt- and external ventricular drainage-associated infections
Ventricular shunt- and external ventricular drainage-associated infections

<table>
<thead>
<tr>
<th></th>
<th>Ventriculo-peritoneal (VP) and ventriculo-atrial (VA) shunt</th>
<th>External ventricular drain (EVD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication</td>
<td>Chronic, persistent hydrocephalus</td>
<td>Acute hydrocephalus</td>
</tr>
<tr>
<td>Infection risk</td>
<td>5-15%</td>
<td>10-15% (increases with time)</td>
</tr>
<tr>
<td>Risk factors</td>
<td>Serial revisions, postoperative CSF leakage, earlier infection, prolonged intervention time</td>
<td>EVD indwelling time, intracranial hemorrhage, cranial fracture with CSF leakage, EVD irrigation</td>
</tr>
<tr>
<td>Infection acquisition</td>
<td>- Intraoperative (n=56, 72%)</td>
<td>- Contiguous</td>
</tr>
<tr>
<td></td>
<td>- Contiguous (n=21, 27%)</td>
<td>- Intraoperative</td>
</tr>
<tr>
<td></td>
<td>- Skin wound, perforated gut (VP shunts), etc.</td>
<td>- Contiguous</td>
</tr>
<tr>
<td></td>
<td>- Hematogenous (n=1, 1%)</td>
<td>- Intraoperative</td>
</tr>
<tr>
<td></td>
<td>- VA-shunts</td>
<td></td>
</tr>
<tr>
<td>At the end</td>
<td>Shunt dysfunction, hydrocephalus</td>
<td>Up to 44% require internal shunt</td>
</tr>
</tbody>
</table>

VA- and VP-shunt-associated infections: Clinical signs and symptoms (n=78)

Proximal shunt part: Ventriculitis, meningitis

Distal shunt part: Fever, endocarditis, septic emboli, shunt nephritis

When VA-shunts?
- Previous abdominal surgery, history of peritonitis, morbid obesity, VP-shunt failure
- Lower infection rate, but higher mortality rate and more difficult revisions

Clinical sign and symptom	**Total n=78**
Fever | 61 (78)
Neurological signs and symptoms | 50 (64)
Local signs of infection | 38 (49)
Symptom duration before infection diagnosis | 5 days (range 0-21 days)

Chronic VA-shunt-associated infections: Complications (endocarditis and nephritis)

- 26 year old female: Hydrocephalus since birth
 - Actual VA-shunt since 14 years
 - Symptoms: Recurrent fever, myalgia
 - Blood cultures, TEE, lumbar puncture: No infection

- 4 years later: End-stage renal disease, hemodialysis
 - Kidney biopsy: Diffuse mesangiocapillary GN
 - TEE: Vegetation on tricuspid valve
 - Shunt valve puncture: Propionibacterium acnes

- Treatment: Complete shunt removal, i.v. penicillin
 - Endoscopic third ventriculo-cisternostomy
 - Kidney transplantation

- Coagulase-negative staphylococci and P. acnes
- Subacute bacterial endocarditis and shunt nephritis

Burström G. BMJ Case Rep 2014
Where to puncture in VP-shunt-associated infections: CSF leukocytes & culture (n=78)

- 80% with elevated CSF leukocyte count
- 91% positive culture results from any collected material

Site of specimen collection:
- Wound swab (n = 28)
- Shunt tip (n = 55)
- CSF from shunt valve
- Ventricular CSF (n = 40)
- Lumbar CSF (n = 22)
- Blood culture (VA shunt) (n = 6)
- Blood culture (VP shunt) (n = 47)

Site of CSF collection:
- Ventricular
- Lumbar
- Valve

CSF overall 66%

CSF: cerebrospinal fluid
VA: ventriculooatrial
VP: ventriculoperitoneal

Conen A. CID 2008; 47:73-82
VP-shunt-associated infections: Microbiology (n=78)

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Overall (n = 78)</th>
<th>Early<sup>a</sup> (n = 48)</th>
<th>Delayed<sup>b</sup> (n = 22)</th>
<th>Late<sup>c</sup> (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulase-negative staphylococci<sup>d</sup></td>
<td>29 (37)</td>
<td>19</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>* Staphylococcus aureus<sup>d</sup></td>
<td>14 (18)</td>
<td>9</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>Propionibacterium acnes</td>
<td>7 (9)</td>
<td>5</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>Viridans group streptococci</td>
<td>3 (4)</td>
<td>2</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>Enterobacteriaceae<sup>e</sup></td>
<td>3 (4)</td>
<td>3</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Nonfermenters<sup>f</sup></td>
<td>2 (3)</td>
<td>...</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Enterococcus species</td>
<td>1 (1)</td>
<td>...</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>Polymicrobial<sup>g</sup></td>
<td>12 (15)</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Culture negative</td>
<td>7 (9)</td>
<td>6</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>

* Intraoperative or postoperative contamination
** Wound dehiscence or gastrointestinal perforation

Early: <1 month after implantation
Delayed: 1-12 months after implantation
Late: >12 months after implantation

Conen A. *CID* 2008; 47:73-82
Only one randomized controlled trial for optimal treatment strategy in children (n=50)

Table 6. Therapy and Results in CSF Infected Shunts

<table>
<thead>
<tr>
<th></th>
<th>Number of patients</th>
<th>Successful trials</th>
<th>Unsuccessful trials</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>With removal of shunt *</td>
<td>22</td>
<td>21</td>
<td>95%</td>
<td>1</td>
</tr>
<tr>
<td>With removal**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and immediate replacement</td>
<td>17</td>
<td>15</td>
<td>88%</td>
<td>2</td>
</tr>
<tr>
<td>Without removal of shunt**</td>
<td>11</td>
<td>4</td>
<td>36%</td>
<td>7</td>
</tr>
</tbody>
</table>

* Includes one patient who received intravenous antibiotics only (lumbo-peritoneal shunt).

1 week intraventricular and i.v. antimicrobial treatment; as soon as infection is eliminated: reinsertion of a new shunt

** 2 weeks intraventricular and 3 weeks i.v. antimicrobial therapy

Microorganisms: 31 S. epidermidisa, 5 S. aureusa, 2 streptococci, 2 Haemophilus influenzae, each 1 Micrococcus, P. aeruginosaa, E. coli, P. acnes, Corynebacterium sp.; 5 polymicrobial infections

aAssociated with treatment failure

VP-shunt-associated infections: Therapy (n=78)

Overall success: 96%
Antibiotics & surgery: 98%
Antibiotics only: 87%

Retention or 1-stage exchange of VP-shunt possible with antibiotics against biofilms

Figure 3. Antimicrobial and surgical treatment strategies and treatment outcomes of CSF shunt–associated infections. During follow-up, 2 relapses and 4 reinfections occurred. 1Removal, for noninfectious reasons. 2Relapse, coagulase-negative staphylococci, rifampin resistant. 3Death, *Pseudomonas aeruginosa* infection associated with ventriculoperitoneal shunt; surgical treatment refused.
Proposed algorithm for the management of shunt-associated infections

Shunt-associated infection

Diagnostic:
- CSF sample (valve puncture)
- Blood cultures

Empirical antimicrobial therapy
- Vancomycin i.v. PLUS
- Ceftriaxone or cefepime i.v.

- No ventriculitis / meningitis / abscess
- No dysfunction
- No erosion (intact skin and gut)

AND
- Early infection

AND
- Microorganisms known to be susceptible to anti-biofilm antibiotics

Shunt retention or immediate reinsertion possible

12 weeks anti-biofilm treatment
(usually 2 weeks i.v., then 10 weeks oral treatment)

Adapt antimicrobial treatment to culture results

Remove shunt, treat infection, intercurrent EVD if necessary

Reinsert shunt once infection is cleared, usually **after 7-21 days**
(dependent on: microorganism, extent of infection, CSF results)

CSF: Cerebrospinal fluid
EVD: external ventricular drainage

Yes

No
External ventricular drains (EVD)-associated infections

Ventriculitis, meningitis, exit site infection
- Fever, headache, decrease in GCS, neck stiffness, vomiting

- Median EVD indwelling time: **7 days** (range, 1-39 days)
- Occurrence of infection: median **6 days** after implantation (range, 1-17 days)

- 23% presented within 10 days after EVD removal
- Mostly coagulase-negative staphylococci

EVD-associated infections: Microbiology, CSF leukocytes (n=48)

Detection of microorganism: 37/48 (77%)

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Microbiology of 48 episodes of EVD-associated infections.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causing microorganisms</td>
<td>n = 48</td>
</tr>
<tr>
<td>Monomicrobial infection</td>
<td></td>
</tr>
<tr>
<td>Coagulase-negative staphylococci</td>
<td>17 (63)</td>
</tr>
<tr>
<td>Propionibacterium acnes</td>
<td>4 (15)</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>3 (11)</td>
</tr>
<tr>
<td>Other</td>
<td>3 (11)</td>
</tr>
<tr>
<td>Polymicrobial infection</td>
<td>10 (21)</td>
</tr>
<tr>
<td>Culture-negative infection</td>
<td>11 (23)</td>
</tr>
</tbody>
</table>
Proposed algorithm for the management of suspected EVD-associated infections

Febrile patient with EVD

CSF purulent?

- Yes
 - >300×10⁶ cells/l, serum/CSF glucose ratio <0.5, CSF lactate >2.1 mmol/l
 - Immediately start antimicrobial treatment
 - Vancomycin i.v. PLUS
 - Ceftriaxone or cefepime i.v. (according to local surveillance data)
 - Adapt treatment to culture results; treatment duration 7-21 days (dependent on: microorganism, extent of infection, CSF results)

- No
 - Rule out contamination and colonization
 - If infection suspected: Increased cell index* and EVD in situ > 3 days
 - EVD replacement mainly
 - *S. aureus*, gram-negative and Candida infections
 - Inadequate response to treatment

- No
 - CSF gram stain: gram-positive bacteria (mostly staphylococci)

* Cell index: Leukocyte/erythrocyte ratio in CSF vs. leukocyte/erythrocyte ratio in blood

Questions concerning EVD management

- Daily CSF sampling – not recommended
- Prophylactic EVD exchange – not recommended
 - Increased risk of infection by regular system manipulation
- Rifampin therapy in EVD-associated infections – not recommended
 - Rifampin later needed in case of definitive VP-shunt (curative therapy)
 - Change of microbiome and emergence of rifampin-resistance
- Antibiotic-impregnated catheters (rifampin, clindamycin) - not recommended
 - Emergence of rifampin resistance

Neurostimulator-associated infections
<table>
<thead>
<tr>
<th>Indications</th>
<th>Spinal cord stimulator (SCS)</th>
<th>Deep brain stimulator (DBS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic refractory pain, stool incontinence</td>
<td>Movement disorders (Parkinson’s disease, dystonia), refractory pain</td>
<td></td>
</tr>
<tr>
<td>Infection rate</td>
<td>5% (2.5-14%) 38%</td>
<td>5.6% (0-15%) 52%</td>
</tr>
<tr>
<td>Most common pathogens</td>
<td>S. aureus, coagulase-negative staphylococci, P. aeruginosa</td>
<td>S. aureus, coagulase-negative staphylococci, P. acnes</td>
</tr>
</tbody>
</table>

- Epidural abscess
- Rarely lead infection
- Brain abscess
- Meningitis
- Wire/wire extender infection
- >50% pocket infection

References:
- Follett K. *Anesthesiology* 2004; 100:1582–94.
- Kumar K. *Neuromodulation* 2014;17:22–35.
Treatment of DBS- and SCS-associated infections

- Surgical debridement and soft tissue coverage
- Implant retention/immediate reimplantation possible if:
 - Early infection (for implant retention)
 - Microorganism known, susceptible to anti-biofilm antibiotics
 - No brain/epidural abscess

<table>
<thead>
<tr>
<th>Clinical situation</th>
<th>Deep brain/spinal cord stimulator</th>
<th>Antibiotic therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pocket infection</td>
<td>Change generator (and implantation site), keep wires and leads</td>
<td></td>
</tr>
<tr>
<td>Extracranial wire infection</td>
<td>Keep generator and leads, debride wound, change wires, lead extenders or connector sites</td>
<td>12 weeks anti-biofilm antibiotic treatment</td>
</tr>
<tr>
<td>DBS/SCS removed (no difficult to treat microorganisms)</td>
<td>Reimplantation immediate (1-stage exchange)</td>
<td></td>
</tr>
<tr>
<td>DBS/SCS removed (no difficult to treat microorganisms)</td>
<td>Reimplantation delayed (2-stage exchange), after 2-6 weeks</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

- If implant in situ → treat as biofilm infections
 - Always combination of surgery and anti-biofilm therapy

- In case of infection: Interdisciplinary management
 - Microbiologist, neurosurgeon, ID specialist

- Adhere to treatment algorithms to achieve high treatment success (cure rates >90% possible)
 - Improved diagnostic with sonication of implants
 - Efficient strategy to cure infections without implant removal or 1-stage implant exchange
Neurological implants

Craniotomy/bone flap
Cranioplasty
Deep brain stimulator
Ventriculo-peritoneal shunt
Spinal cord stimulator
External ventricular drainage
Ventriculo-atrial shunt

Thank you for your attention

Anna Conen, MD MSc
Division of Infectious Diseases and Hospital Hygiene
anna.conen@ksa.ch