ANTIMICROBIAL STEWARDSHIP (AMS) IN THE ERA OF MULTI-DRUG RESISTANCE

Prof. Céline Pulcini
Infectious Diseases specialist
Nancy University Hospital (France)

ESCMID Summer School 2015 (Istanbul, Turkey)
Learning objectives

• Know the drivers of bacterial resistance
• Understand the principles of AMS
• Understand the barriers to AMS
WHAT IS AMS ?
Definition - *Antimicrobial stewardship*

Prescription:

- The most efficient for the patient
- With as few side effects as possible: toxicity, *Clostridium difficile* infections and selection of resistance

Dellit TH *et al.* Clin Infect Dis. 2007;44(2):159-77
Not only the antibiotics

- Antifungals
- Antiparasitics
- Antivirals
Why is AMS important?
International crisis

Less antimicrobials

More resistance
Burden of bacterial resistance

ECDC (2009)
25 000 deaths/year in Europe

CDC (2013)
Most recent estimates

Enormous costs
And very high number
of deaths
WHO Global action plan on antimicrobial resistance endorsed at the Sixty-eight World Health Assembly in May 2015
Worldwide increase in bacterial resistance, in all settings

Fluoroquinolones

E. coli FQ-R/I (2006) vs *E. coli* FQ-R/I (2013)

Carbapenemases: the next step…

Europe and beyond

E. coli carbap-R/I (2013)
Association between antibiotic use and resistance

- Any antibiotic taken has an impact on the microbiota
- Resistant bacteria spread to other living creatures and the environment
- Bacteria have remarkable adaptation capacities

Worldwide increase of antibiotic use

- 2000-2010 international data
- +36%, in particular broad-spectrum antibiotics
- Mainly Brazil, Russia, India, China and South Africa

Very few new antibiotics in the pipeline

Impact of bacterial resistance

- Mortality
- Costs

- MDR/XDR bacteria infections jeopardize surgery, immunosuppressive treatments, intensive care management…

- Leads to increased use of broad-spectrum antibiotics: ‘vicious’ circle

An alarming situation

“...a problem so serious that it threatens the achievements of modern medicine. A post-antibiotic era—in which common infections and minor injuries can kill—far from being an apocalyptic fantasy, is instead a very real possibility for the 21st century.”
An alarming situation

- Professor Dame Sally Davies
- England’s Chief Medical Officer

« Antimicrobial resistance poses a catastrophic threat. If we don’t act now, any one of us could go into hospital in 20 years for minor surgery and die because of an ordinary infection that can’t be treated by antibiotics. And routine operations like hip replacements or organ transplants could be deadly because of the risk of infection. »
An alarming situation

• President Barack Obama took action in 2014

• Antibiotic Resistance National Action Plan released in March 2015

• More than $1.2 billion funding
3 main strategies to curb resistance

All settings, all professionals
AMS

Infection control
Environment

Vaccination

One Health approach
DOES AMS REDUCE RESISTANCE?
The evidence

- Yes, AMS reduces resistance, but not on its own
- ‘One health’ approach
GENERAL PRINCIPLES OF AMS
At the international level

- More and more initiatives
- Need for collaboration and global efforts
- Worldwide ESGAP survey including 660 hospitals in 2012: 58% had an existing AMS programme
All settings: out- and inpatients, nursing homes

- Multifaceted comprehensive programmes
- Targeting professionals and the public

- Interesting resources:
 http://www.e-bug.eu
KEY COMPONENTS OF AN ASP

- Multidisciplinary team
- Institutional support
- Ability to monitor antibiotic use and bacterial resistance
- Guidelines
- Educational measures
- Restrictive measures

Dellit, IDSA, 2007
Some AMS measures

Structural measures
- Antibiotic order form
- Availability of expert advice
- Guidelines
- Computerised decision support systems
- Rapid diagnostic tests

Educative measures
- Education
- Audits and feedback
Some AMS measures

Restrictive measures

- Restrictive prescribing
- Review of prescriptions
- Systematic expert advice in some cases (MDR, blood cultures, reserve antibiotics…)

Monitoring

- Antibiotic use
- And resistance
- With feedback and benchmarking
Final objective: appropriate antibiotic prescriptions

- No unnecessary prescriptions
 - Better diagnosis
- No inappropriate prescriptions
 - Choice of the molecule
 - Dose
 - Route of administration
 - Duration
BARRIERS TO ASP

BARRIERS

• Funding
• Lack of IT support
• Lack of institutional support

POTENTIAL SOLUTIONS

• Convince
 ○ International literature
 ○ Sensitive/high-priority area:
 ▶ Patient safety
 ▶ Healthcare-acquired infections / bacterial resistance / C. difficile
 ▶ Costs
 ○ National association / lobbying

• Monitor your process and outcome measures to demonstrate success +++
BARRIERS TO ASP

BARRIERS

• Opposition from prescribers
• Where to start?

POTENTIAL SOLUTIONS

• « Low-hanging fruits »
• Mix restrictive and educative measures
• Build on successes, progressively

• Don’t reinvent the wheel, share ideas
• Many tools on the ESGAP website

Clinical Infectious Diseases 2012;55(4):587–92
1. CHANGING BEHAVIOUR
The Biggest Error We Make in Trying to Change Behavior

Assuming knowledge changes behavior

• Our instinct to create change (esp. in medicine)

 Analyze → Think → Change

• More effective way to create change

 See → Feel → Change
Goal = changing behaviour

- Behaviour change theories and strategies
- Cultural influence
- Quality improvement strategies
- No magic bullet
Antibiotic prescribing = not a rational action
‘We can never change the behaviour of any other human being, but we can facilitate for others to modify their own behaviour.’

Understanding and changing human behaviour—antibiotic mainstreaming as an approach to facilitate modification of provider and consumer behaviour

CECILIA STÅLSBY LUNDBORG¹ & ASHOK J. TAMHANKAR¹,²

Behaviour change and antibiotic prescribing in healthcare settings
Literature review and behavioural analysis
Resistance to change
Understanding the Determinants of Antimicrobial Prescribing Within Hospitals: The Role of “Prescribing Etiquette”

E. Charani, E. Castro-Sanchez, N. Sevdalia, Y. Kyriakou, L. O’Dowd, N. Shah, and A. Holmes

1. Non-interference with the prescribing decisions of colleagues: Reluctance to interfere with the prescribing decisions of colleagues. In the case of antimicrobial prescribing there is a reluctance to intercept antimicrobial prescriptions started by colleagues. This recognises the autonomous decision making process of prescribing.

2. Accepted non-compliance to policy: Deviations from policy recommendations are tolerated and put in the context of the prescriber’s experience, expertise and the specific clinical scenario. This leads to hierarchy and expertise, and not policy as determinants of prescribing practice behaviours.

3. Hierarchy of prescribing: Prescribing as an activity is performed by junior doctors. But it is the senior doctors who decide what is prescribed.

Keywords: prescribing etiquette; antimicrobial prescribing; prescribing behavior.
National cultural dimensions as drivers of inappropriate ambulatory care consumption of antibiotics in Europe and their relevance to awareness campaigns

Michael A. Borg

Infection Control Unit, Mater Dei Hospital, Msida, Malta

*Tel: +356-2545-4588; Fax: +356-2545-4544; E-mail: michael.a.borg@gov.mt

Received 12 July 2011; revised 7 November 2011; accepted 26 November 2011

Objectives: European countries exhibit significant geographical differences in antibiotic consumption per capita within ambulatory care, especially inappropriate use for colds/flu/sore throat (CFSt). One potential explanation could be national cultural differences resulting in varying perceptions and, therefore, influences.

Methods: Publicly available data on the proportions of respondents in the 2009 Eurobarometer survey who had taken antibiotics for CFSt were tested for association against country scores derived from the Hofstede cultural dimension model. They were also correlated with knowledge of respondents about various key antibiotic facts.

Results: The Eurobarometer dataset incorporated 26,259 responses from all European Union (EU) countries except Cyprus. Using multiple regression, uncertainty avoidance and masculinity were identified as the two national cultural dimensions significantly associated with the use of antibiotics for CFSt (R-adjusted=0.45; P<0.001). After controlling for these cultural influences, individuals who stated they had received information about antibiotics in the previous year were also more likely to correctly answer antibiotic-related questions (r=0.721; P<0.001). The use of antibiotics for CFSt was found to be inversely correlated with respondents' knowledge that antibiotics are ineffective against viruses (r=-0.724; P<0.001) and that misuse will render them ineffective in the longer term (r=-0.775; P<0.001).

Conclusions: National cultural dimensions, especially uncertainty avoidance and masculinity, appear to have a very significant impact on inappropriate antibiotic use within European countries. Nevertheless, their influence can be reduced by making EU citizens more knowledgeable about antibiotics through appropriate messages and targeted campaigns.
Group dynamic

Fig. 1. Rogers’s adoption/innovation bell curve (reproduced)

Pulcini C et al., Disease Management Health Outcomes 2007
1. Summarise the evidence
 Identify interventions associated with improved outcomes
 Select interventions with the largest benefit and lowest barriers to use
 Convert interventions to behaviours

2. Identify local barriers to implementation
 Observe staff performing the interventions
 “Walk the process” to identify defects in each step of implementation
 Enlist all stakeholders to share concerns and identify potential gains and losses associated with implementation

3. Measure performance
 Select measures (process or outcome)
 Develop and pilot test measures
 Measure baseline performance

4. Ensure all patients receive the interventions
 Implement the “four Es” targeting key stakeholders from front line staff to executives

 Engage
 Explain why the interventions are important

 Evaluate
 Regularly assess for performance measures and unintended consequences

 Execute
 Design an intervention “toolkit” targeted at barriers, standardisation, independent checks, reminders, and learning from mistakes

 Educate
 Share the evidence supporting the interventions

Overall concepts
Envision the problem within the larger healthcare system
Engage collaborative multidisciplinary teams centrally (stages 1-3) and locally (stage 4)

Pronovost P, Berenholtz S, Needham D. BMJ 2008;337:a1714
2. LACK OF PLANNING
Think and plan!

- Action is good
- But planning, monitoring and assessing are crucial steps
Measuring the impact of an AMS programme

<table>
<thead>
<tr>
<th>Indicators Measures</th>
<th>Quality</th>
<th>Accountability</th>
<th>Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Improving practices</td>
<td>Public benchmarking</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Measures</td>
<td>Few Easy to collect</td>
<td>Few Complex collection Valid Reproducible</td>
<td>Many Complex collection Valid Reproducible</td>
</tr>
<tr>
<td>Period of time</td>
<td>Short Real time feedback</td>
<td>Long Delayed feedback</td>
<td>Long Delayed feedback</td>
</tr>
</tbody>
</table>

Pulcini C *et al.*, Disease Management Health Outcomes 2007
How to measure to bring about change?

Few measures (20/month), run chart, real time feedback

Pulcini et al., Disease Management Health Outcomes 2007
Measuring the impact of an AMS programme

- Accurate definition of numerators/denominators
- Structure/activity measures
- Process measures (surrogate markers):
 - IV-oral switch
 - Review of antibiotic prescriptions
 - Expert advice for bacteremia
 - Prescription compliant with guidelines...

- Outcome measures: influenced by many factors
 - Antibiotic use
 - Bacterial resistance
 - *C. difficile* infections
 - *S. aureus* bacteremia mortality rate
 - SSIs rate...

- Balancing measures:
 - Readmission rate for infections
Possible quality indicators for antimicrobial drug use

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Drug oriented</th>
<th>Disease oriented</th>
<th>Patient oriented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>- Presence of an antimicrobial management team</td>
<td>- Systematic ID advice for bacteremia</td>
<td>- Systematic weekly ward round in ICUs</td>
</tr>
<tr>
<td>Process</td>
<td>- Clinical indication for all antibiotic prescriptions</td>
<td>- One dose only for surgical prophylaxis</td>
<td>- Compliance to guidelines for ICU patients</td>
</tr>
<tr>
<td></td>
<td>- Systematic day 3 reassessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- IV-oral switch criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcome</td>
<td>- Antibiotic consumption in DDDs and euros</td>
<td>- % Clostridium difficile colitis</td>
<td>- Incidence of VAP in ICU patients/number of patients between VAP episodes</td>
</tr>
<tr>
<td></td>
<td>- % IV/oral for some antibiotics: FQ</td>
<td>- Resistance rates</td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS
Have courage!

- Implementing an AMS programme is a long journey
- Implement progressively
- Start with easy things, with early adopters colleagues
- Assess your actions
References for further reading

- WHO: http://www.who.int/drugresistance/en/
- CDC: http://www.cdc.gov/drugresistance/
- UK: https://www.gov.uk/government/collections/antimicrobial-resistance-amr-information-and-resources
- Practical guide (D. Nathwani et al.): http://www.biomerieux-industry.com/node/886
You like AMS... join ESGAP!
Any question?

celine.pulcini@univ-lorraine.fr