In Vitro Investigations on the "Atypical" Protein Binding Behaviour of Tigecycline Using Ultrafiltration

Alexander Kratzer1, Michael Schleibinger2, Uwe Liebchen2, Alexandra Murschhauser3, Martin G. Kees4,5, Ulrich Rothe1, Frieder Kees3

1Hospital Pharmacy, University Hospital Regensburg, 2Dept. of Internal Medicine I, University Hospital Regensburg, 3Dept. of Pharmacology, University of Regensburg,
4Dept. of Anesthesiology and Intensive Care, Charité University Hospital Berlin, 5Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Free Universität Berlin

Alexander2.kratzer@ukr.de

Introduction

Tigecycline is a glycyclcycline antibiotic with activity against a variety of Gram-positive and Gram-negative bacteria including those with resistance to many existing antibiotics.

- Protein binding of tigecycline is 71-89% according to the Summary of Product Characteristics (08Jan2015, Pfizer Ltd), i.e. the unbound fraction (fu) is 10-30%.
- An atypical behaviour of tigecycline, i.e. increasing fu with decreasing plasma concentrations, has been reported using ultrafiltration [1] or microdialysis [2].
- However, a great impact of the experimental conditions on the measured protein binding has been shown for several antibiotics [3].

The aim of the present study was

- to describe the influence of the experimental conditions during ultrafiltration on the protein binding of tigecycline.
- to further characterise the atypical protein binding behaviour of tigecycline.

Results I

The binding of tigecycline in plasma of healthy volunteers

- was much higher at pH > 8 in agreement with the lipophilic nature of the tetracycline albumin interaction [4].
- was similar in plain plasma and in plasma buffered to 8.2.

Fig. 1: Unbound fraction of tigecycline at 0.3 mg/L (mean, SD, n = 8) in plasma buffered with phosphate or HEPES (finally 0.1 M) and in unbuffered plasma, respectively.

The atypical binding behaviour of tigecycline: increasing unbound fraction with decreasing concentration

- was not confined to tigecycline, but also seen with minocycline.
- was attenuated in phosphate buffered plasma.

Fig. 2: Unbound fraction of tigecycline or minocycline (mean, SD) in plasma buffered with HEPES (n = 3) or phosphate (n = 4) to pH 7.4.

HPLC analysis: Tigecycline and minocycline were determined by RP-HPLC with UV detection at 350 nm.

Methods

Ultrafiltration: The standard procedure [3] included ultrafiltration (20 min, 1000xg, 37˚C using Nanosep Omega 10K centrifugal devices) of 300 µL heparin plasma from healthy volunteers buffered with 10 µL 3 M potassium phosphate, pH 7.5. The resulting pH was 7.3 before and 7.5-7.6 in the remaining plasma after ultrafiltration. HEPES 3 M was used alternatively or to achieve pH 8.2. The ultrafiltrate (70-85 µL) was acidified with 50 µL 0.2 M hydrochloric acid containing minocycline 0.5 mg/L as internal standard.

Binding studies: Studies in human serum albumin (HSA, lyophilised powder, essentially fatty acid free, A1887, Sigma-Aldrich) were performed in 70-100 mM potassium phosphate or HEPES buffer made isotonic with sodium chloride. Calcium chloride 2.5 mM and/or EDTA 2.5-3.0 mM were added to investigate the influence of calcium ions and/or of a metal ion chelating agent on the protein binding of tigecycline.

References

Conclusions

- Protein binding of tigecycline strongly increases with pH: maintaining a physiological pH is mandatory to get reliable results.
- The atypical binding behaviour
 - is not unique for tigecycline, but also seen with other tetracyclines such as minocycline.
 - is compatible with a saturable cooperative binding type incorporating polyvalent metal ions.
- EDTA or (to a minor extent) phosphate in high concentrations hide the atypical binding behaviuor.
- Binding results obtained by ultrafiltration or equilibrium dialysis using phosphate buffer are probably biased.
- However, the neutrality of HSA buffer has still to be verified.

Fig. 1: Unbound fraction of tigecycline (mean, SD, n = 6 if not mentioned otherwise) in HSA 4% buffered with isotonic 70 mM HEPES (H) or 70 mM phosphate (P) to pH ca. 7.4, with/without 2.5 mM Ca++ and/or 5.0 mM EDTA.