Radiological findings in Neurobrucellosis


1GATA Haydarpasa, Istanbul, Turkey; 2Haydarpasa Numune Training and Research Hospital- Department of Infectious Diseases and Clinical Microbiology, Istanbul, Turkey; 3Haydarpasa Numune Training and Research Hospital- Department of Radiology, Istanbul, Turkey; 4Yuzuncu Yil University School of Medicine- Department of Infectious Diseases and Clinical Microbiology, Van, Turkey; 5Hattar University- School of Medicine- Department of Infectious Diseases and Clinical Microbiology, Sariyer, Turkey; 6Karanaz Technical University School of Medicine- Department of Infectious Diseases and Clinical Microbiology, Adana, Turkey; 7Private Erzurum Sifa Hospital- Department of Infectious Diseases and Clinical Microbiology, Erzurum, Erzurum, Turkey; 8Private Sivas Sipahi University Hospital- Department of Infectious Diseases and Clinical Microbiology, Sivas, Sivas, Turkey; 9Haydarpasa University Hospital- Department of Infectious Diseases and Clinical Microbiology, Istanbul, Turkey; 10Baskent University- School of Medicine- Department of Infectious Diseases and Clinical Microbiology, Adana, Turkey; 11Baskent University- School of Medicine- Department of Infectious Diseases and Clinical Microbiology, Adana, Turkey; 12Dicle University School of Medicine- Department of Infectious Diseases and Clinical Microbiology, Diyarbakir, Turkey; 13Dicle University School of Medicine- Department of Infectious Diseases and Clinical Microbiology, Diyarbakir, Turkey; 14Ankara Ataturk Training & Research Hospital- Department of Infectious Diseases and Clinical Microbiology, Ankara, Turkey; 15Ataturk University School of Medicine- Department of Infectious Diseases and Clinical Microbiology, Samsun, Turkey; 16Sutcu Imam University- School of Medicine- Department of Infectious Diseases and Clinical Microbiology, Istanbul, Turkey; 17Izmit Bayal University School of Medicine- Department of Infectious Diseases and Clinical Microbiology, Bolu, Turkey.

BACKGROUND

Imaging abnormalities is variable in meningitis or meningoencephalitis due to brucellosis and is not well documented in the literature. It may usually reflect inflammation, whitematter changes, and vascular insult. The aim of this study was to evaluate the neuroimaging abnormalities of in due course of central nervous system (CNS) brucellosis.

METHODS

This retrospective study enrolled 263 adult patients with CNS brucellosis (145 male and 118 female patients; age range 15–75 years; median age 36 years) in 26 health care institutions from Turkey. The inclusion criteria for the patients were all of the following (i) the presence of typical cerebrospinal fluid (CSF) findings consistent with meningitis, (ii) the presence of positive culture or serological tests for brucellosis in the blood (positive Rose-Bengal test [RBT] and tube dilution test [TDT] with a titer of 1/160 or over) or in the CSF (positive RBT or TDT with any titer), (iv) and the absence of an alternative neurological diagnosis that explained the clinical presentation. We reviewed 242 MR imaging studies (213 of brain, 29 of spine) and 226 CT scans of brain in 263 patients.

RESULTS

Overall, 145 (55.1%) patients were males with a mean age of 36.07±15.59 years (range, 15–75 years). In 261 (99%) patients, at least one serologic test for Brucella was positive. Brucella spp were isolated from the CSF in 36 of 233 patients (15%). We classified involvement patterns into five groups such as; normal, whitematter changes, vascular changes, inflammation and others. Some of patients imaging findings had involved different groups.

Group 1: 83 of 263 patients had normal CT or MRI findings.

Group 2: 32 (12%) patients who had whitematter changes (Figure 1) and 15 out of these 32 patients demyelinating lesions were observed.

Group 3: 42 (16%) patients had vascular changes and of those 39 patients had chronic cerebral ischemia while two cases had subdural hematoma and one patient had subarachnoid hemorrhage.

CONCLUSION

CNS brucellosis has different spectrum imaging abnormalities. In patient groups we have observed inflammatory changes as the primary abnormality followed by vascular changes. We believe that inflammatory changes are the most suggestive imaging findings for brucellar CNS disease.