Glycopeptide resistance in *S. aureus* - methods and prevalence of resistance

R. Skov, MD
Bacteriological Surveillance and Infection Control
Statens Serum Institut
Copenhagen, Denmark
Disclosures

- Have received grants, being a speaker, consulting, or being a member of an advisory board for the following companies Leo-Pharma, Novartis, Pfizer, RibX and Targenta
Glycopeptide antibiotics

- Cell wall acting glycosylated peptides
 - binds to the terminal D-alanyl-D-alanine moieties of the stem pentapeptides that attach to \(N \)-acetylglucosamine / \(N \)-acetylmuramic acids
 - prevents crosslinking of the peptidoglycan

- Vancomycin and Teicoplanin
 - Oritavancin

- Large hydrophilic molecules
 - target is just on outside the of the cytoplasmic membrane
 - i.e. molecules have to diffuse though the cell wall
Resistance / reduced susceptibility to vancomycin

Break points

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>I</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUCAST</td>
<td>≤2</td>
<td>-</td>
<td>>2</td>
</tr>
<tr>
<td>CLSI</td>
<td>≤2</td>
<td>4-8</td>
<td>≥16</td>
</tr>
</tbody>
</table>

EUCAST warning

- Glycopeptide MICs are method dependent and should be determined by broth microdilution (reference ISO 20776).
- *S. aureus* with vancomycin MIC values of 2 mg/L are on the border of the wild type MIC distribution and there may be an impaired clinical response.
Resistance / reduced susceptibility to vancomycin

- S. aureus with reduced vancomycin susceptibility: SA-RVS
 - Vancomycin intermediate resistant S. aureus – VISA
 - Heterogeneous vancomycin intermediate resistant S. aureus – hVISA
 - i.e. “normal” MIC but resistant subpopulations

- Vancomycin resistant S. aureus – VRSA
Mechanisms of resistance

VRSA:
- *vanA* gene positive
 - Change of D-alanyl-D-alanin to D-alanyl-D-lactate
 - 1000 fold decrease in affinity to vancomycin
- Typical MIC > 16 mg/L to vancomycin

VISA isolates:
- not a single mutation or acquisition of a single gene
 - Complex! Involves a series of changes!
 - Increased cell wall thickening, increased number of free D-alanyl-D-alanin residues, reduced autolytic activity, mutations in regulators of cell wall synthesis (i.e. *graRS*, *vraSR*), change in transcription profile
- Typical MIC 4-8 mg/L
Mechanisms of resistance

- hVISA - Isolates susceptible by standard MIC testing but have subpopulations expressing reduced susceptibility
 - Same types of resistance mechanisms as VISA isolates
- Typical MIC 1-2 mg/L

Population profile of initial isolate (6000) and after persistent bacteremia / vancomycin therapy (6001)

Howden, AAC, 2006
Susceptibility testing

- Disk diffusion cannot discriminate wildtype/susceptible isolates from isolates with reduced susceptibility
 - No zone brp in EUCAST / CLSI guidelines

- MIC results are method dependent!

Swensson, JCM 2009, 2013
Comparison of BMD and commercial systems

- 129 S. aureus isolates with MICs between 0.5 and 8 mg/L

TABLE 1. Vancomycin MICs and MIC categories determined by three reference methods and six commercial systems

<table>
<thead>
<tr>
<th>Method or system</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>S</th>
<th>I</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMIC-Difco</td>
<td>7</td>
<td>53</td>
<td>24</td>
<td>36</td>
<td>9</td>
<td></td>
<td>65.1</td>
<td>34.9</td>
<td>0</td>
</tr>
<tr>
<td>BMIC-BBL</td>
<td>9</td>
<td>53</td>
<td>26</td>
<td>38</td>
<td>6</td>
<td></td>
<td>68.2</td>
<td>31.8</td>
<td>0</td>
</tr>
<tr>
<td>Agar dilution</td>
<td>9</td>
<td>54</td>
<td>33</td>
<td>29</td>
<td>4</td>
<td></td>
<td>74.4</td>
<td>25.6</td>
<td>0</td>
</tr>
<tr>
<td>Ettest</td>
<td>4</td>
<td>22</td>
<td>48</td>
<td>47</td>
<td>8</td>
<td></td>
<td>57.4</td>
<td>42.6</td>
<td>0</td>
</tr>
<tr>
<td>MicroScan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57.4</td>
<td>42.6</td>
<td>0</td>
</tr>
<tr>
<td>Phoenix</td>
<td>9</td>
<td>55</td>
<td>42</td>
<td>23</td>
<td></td>
<td></td>
<td>49.6</td>
<td>50.4</td>
<td>0</td>
</tr>
<tr>
<td>Sensititre</td>
<td>64</td>
<td>33</td>
<td>28</td>
<td>1</td>
<td>1</td>
<td></td>
<td>76.4</td>
<td>22.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Vitek Legacy</td>
<td>46</td>
<td>71</td>
<td></td>
<td></td>
<td>1</td>
<td>10</td>
<td>92.2</td>
<td>26.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Vitek 2</td>
<td>68</td>
<td>24</td>
<td>29</td>
<td>8</td>
<td></td>
<td></td>
<td>71.3</td>
<td>28.7</td>
<td>0</td>
</tr>
</tbody>
</table>

Boldface indicates that the MICs for the isolates were less than or equal to the MIC listed.

Swensson, JCM 2009, 2013
Comparison of BMD and commercial systems

- 129 *S. aureus* isolates with MICs between 0.5 and 8 mg/L

<table>
<thead>
<tr>
<th>Method or system</th>
<th>No. of results with vancomycin MIC (µg/mL)</th>
<th>% of results with vancomycin category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>BMIC-Difco</td>
<td>7</td>
<td>53</td>
</tr>
<tr>
<td>BMIC-BBL</td>
<td>9</td>
<td>53</td>
</tr>
<tr>
<td>Agar dilution</td>
<td>9</td>
<td>54</td>
</tr>
<tr>
<td>Etest</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>MicroScan</td>
<td>9</td>
<td>55</td>
</tr>
<tr>
<td>Phoenix</td>
<td>64</td>
<td>33</td>
</tr>
<tr>
<td>Sensititre</td>
<td>46</td>
<td>71</td>
</tr>
<tr>
<td>Vitek Legacy</td>
<td>68</td>
<td>24</td>
</tr>
<tr>
<td>Vitek 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boldface indicates that the MICs for the isolates were less than or equal to the MIC listed.

Swenson, JCM 2009, 2013
Gradient tests vs BMD

Several studies have confirmed that Etest (biomerrieux) results in MICs 0.5 to 1.5 double dilutions higher than BMD

- No studies with M.I.C.E (Thermofisher) or the MIC Test strip (Liofilchem)
- 1800 isolates were tested in parallel
- Far more isolates with MIC of 2 mg/L i.e. EUCAST warning!
 - Do not change No. of resistant isolates

Sader AAC, 2009, 3162
Comparison of BMD and commercial systems

- 129 *S. aureus* isolates with MICs between 0.5 and 8 mg/L
Comparison of BMD and commercial systems

- 129 *S. aureus* isolates with MICs between 0.5 and 8 mg/L

<table>
<thead>
<tr>
<th>Method or system</th>
<th>No. of results with vancomycin MIC (µg/mL) of a:</th>
<th>% of results with vancomycin category of b:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>BMIC-Difco</td>
<td>7</td>
<td>53</td>
</tr>
<tr>
<td>BMIC-BBL</td>
<td>9</td>
<td>53</td>
</tr>
<tr>
<td>Agar dilution</td>
<td>9</td>
<td>54</td>
</tr>
<tr>
<td>Etest</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>MicroScan</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Phoenix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensititre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitek Legacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitek 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Boldface indicates that the MICs for the isolates were less than or equal to the MIC listed.
Comparison of BMD and commercial systems

- 129 *S. aureus* isolates with MICs between 0.5 and 8 mg/L
Which MIC?

- For the vast majority of clinical trials outcome and thereby approval of antibiotics are correlated to broth micro dilution (BMD) MIC (ISO 20776)
 - Gradient tests and automated systems are manufactured to give similar results as BMD also to comply with ISO 20776-2.

- EUCAST warning
 - Glycopeptide MICs are method dependent and should be determined by broth microdilution (reference ISO 20776-2).
Detection of hVISA

- Present gold standard is population analysis profile PAP-AUC
 - Cumbersome!!
 - Not suited for routine laboratories
 - Require a spiral plater
 - Long assay time
 - >3 days

- Several screening assays developed
 - i.e. none is perfect
Screening assays for hVISA

<table>
<thead>
<tr>
<th>Method</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancomycin broth MICb</td>
<td>11%</td>
<td>100%</td>
<td>372, 389, 393</td>
</tr>
<tr>
<td>BHIA + vancomycin at 6 μg per ml, 10 μl of a 0.5-McFarland-standard suspension (BHIA6V)c</td>
<td>48 h, 4.5–12%</td>
<td>48 h, 68–100%</td>
<td>370, 389, 393</td>
</tr>
<tr>
<td>MHA + teicoplanin at 5 μg per ml, 10 μl of a 2-McFarland-standard suspension (MHA2ST)d</td>
<td>48 h, 65–79%</td>
<td>48 h, 35–95%</td>
<td>82, 252, 370, 389, 393</td>
</tr>
<tr>
<td>MHA + teicoplanin at 5 μg per ml, 10 μl of a 2-McFarland-standard suspensione</td>
<td>48 h, 93%</td>
<td>48 h, 53%</td>
<td>82</td>
</tr>
<tr>
<td>MHA + vancomycin at 5 μg per ml, 10 μl of a 0.5-McFarland-standard suspension</td>
<td>48 h, 1–20%</td>
<td>48 h, 59–99%</td>
<td>370, 372</td>
</tr>
<tr>
<td>Simplified PAPf</td>
<td>48 h, 71%</td>
<td>48 h, 88%</td>
<td>372</td>
</tr>
<tr>
<td>Macromethod Etest (MET)</td>
<td>48 h, 69–98.5%</td>
<td>48 h, 89–94%</td>
<td>174, 289, 370, 372, 389</td>
</tr>
<tr>
<td>Etest GRD</td>
<td>24 h, 70–77%</td>
<td>24 h, 98–100%</td>
<td>174, 393</td>
</tr>
<tr>
<td></td>
<td>48 h, 93–94%</td>
<td>48 h, 82–95%</td>
<td></td>
</tr>
</tbody>
</table>
VRSA

- USA - 12 cases
 - First discovered in 2002
 - 8 from Michigan!
 - 2 most recent from Delaware (2010)

- Iran – 1 case
 - THE-2, 2005

- India - 6 cases
 - From intensive care units in 2 tertiary hospitals in Hyderabad - 2008

http://www.cdc.gov/HAI/settings/lab/vrsa_lab_search_containment.html
Highly variable prevalence's are reported in the literature including within countries

Illustrated by data from Australia

- **Melbourne (Austin)** – 117 MRSA
 - hVISA 56 isolates (48%)
 - VISA 2 isolates (2%)
- **Sydney** 401 MRSA BSI
 - hVISA 46 (11.5%) (almost all ST239)
 - VISA 2 (0.5%)
- **Australia – general** – 532 SAB / 202 MRSA
 - hVISA 2 isolates 0.4% / 1%
 - VISA 0 isolates

Horne AAC, 2009, 3447
Val Hal, PloSOne, 2011
Holmes, JID, 2011, 340
Prevalence og VISA /hVISA

- In General countrywide studies finds very rates of hVISA and VISA even from Japan
 - Reviewed by Howden et al

- Italy – 1284 MRSA isolates (2005-7)
 - 139 had MICs between 1 mg/L and 2 mg/L
 - hVISA 36 isolates (PAP-AUC) 26% / 3%

- Korea – 37,586 isolates (2001-6) screened by BHI + 4 mg/L vancomycin
 - hVISA -15 0.04%
 - VISA – 18 0.04%

- USA – Detroit
 - 485 MRSA blood isolates (1996-2006)
 - hVISA 33 isolates 6.8%
 - VISA 7 isolate 1.4%

Howden, CMR, 2010, 99
Campanile F, IJAA, 2010, 415
Riederer, JCM, 2011
Chung, J Micro Bio, 2010, 637
Vancomycin MIC creep

- A number of institutions have reported an increase in MIC over time especially when using Etest.
- Other studies have, however, not been able to confirm this – including a large study using isolates.

Edwards, JCM, 2012, 318
Vancomycin MIC creep of MIC

- Comparison of vancomycin MICs from 2006-2010 in Scotland
 - Etest and Vitek 2 performed prospectively 2007-10
 - N=102
 - Etest, Vitek 2 and BMD performed on strains after storage 2006-10 (N=208 – including the strains above)

- Results
 - Prospective testing
 - Etest mean MIC 1.08 mg/L
 - Vitek 2 mean MIC 0.56 mg/L
Vancomycin MIC creep of MIC

- Retrospective vs prospective testing
Reduced Clinical efficacy despite Susceptible MIC?

Several papers have shown that the clinical efficacy is related to the MIC even within the susceptible range (i.e. ≤2 mg/L)
Studies supporting lowering of the breakpoints for vancomycin

<table>
<thead>
<tr>
<th>Reference</th>
<th>N</th>
<th>Method</th>
<th>Interpretive MIC</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sakoulas JCM 2004</td>
<td>30</td>
<td>CLSI</td>
<td>> 0.5</td>
<td>Failure</td>
</tr>
<tr>
<td>Moise CID 2004</td>
<td>63</td>
<td>CLSI</td>
<td>> 0.5</td>
<td>Failure</td>
</tr>
<tr>
<td>Moise AACH 2007</td>
<td>34</td>
<td>CLSI</td>
<td>> 0.5</td>
<td>Failure</td>
</tr>
<tr>
<td>Hidayat AIM 2006</td>
<td>95</td>
<td>E-test</td>
<td>>1</td>
<td>Failure</td>
</tr>
<tr>
<td>Lodise AACH 2008</td>
<td>92</td>
<td>E-test</td>
<td>>1</td>
<td>Failure</td>
</tr>
<tr>
<td>Soriano CID 2008</td>
<td>414</td>
<td>E-test</td>
<td>>1</td>
<td>Mortality</td>
</tr>
<tr>
<td>Musta JCM 2009</td>
<td>489</td>
<td>E-test</td>
<td>>1</td>
<td>Mortality</td>
</tr>
<tr>
<td>Kullar R CID 2011</td>
<td>320</td>
<td>E-test</td>
<td>>1</td>
<td>Failure</td>
</tr>
<tr>
<td>Haque Chest 2010</td>
<td>163</td>
<td>E-test</td>
<td>>1</td>
<td>Mortality</td>
</tr>
<tr>
<td>Young Yoon JAC 2010</td>
<td>63</td>
<td>Vitek</td>
<td>≥ 2</td>
<td>PB</td>
</tr>
<tr>
<td>Sheng-Hsiang JAC 2010</td>
<td>277</td>
<td>CLSI</td>
<td>≥ 2</td>
<td>Mortality (PB)</td>
</tr>
</tbody>
</table>
Lowering the breakpoints?

- Lowering the breakpoint to
 - $S < 1 \text{ mg/L}$ for BMD
 - $S < 1.5 \text{ mg/L}$ for Etest

- 83% / 90% of the isolates from Sader et al. would be I/R
 - Does not correspond with clinical perception!

EUCAST warning

- $S. aureus$ with vancomycin MIC values of 2 mg/L are on the border of the wild type MIC distribution and there may be an impaired clinical response.

Tenover, Moellering, CID, 2007, 1208
Summary

- The prevalence of VRSA and VISA isolates are still low in most part of the world.
- The prevalence of hVISA varies in general relatively low but can locally be up 50% of MRSA isolates.
- There are increasing evidence that strains with MIC > 1 mg/L are associated with poorer outcome – but large definitive prospective studies is needed.
 - Especially as MIC determination is highly method dependant.
Summary

- BMD is in my opinion till the reference method for MIC determination
- For hVISA the gold standard continues to be the PAP-AUC method but it is cumbersome
 - Requires a spiral plater!
 - A number of initial screening methods exists but none are perfect!
- The phenotype of hVISA is not stable and may be lost during storage which needs to be taken into account into future studies
Acknowledgements

- Staphylococcus Laboratory
 - Anders Rhod Larsen, Jesper Larsen, Andreas Petersen, Marit Sørum, Julie Hindsberg, Lone Ryste Hansen, Nadia Olsen, Stine Freese Madsen

- Benjamin Howden, Melbourne, Australia
- Brandi Limbargo, CDC, Atlanta, US
- Stefania Stefani, Catania, Italy
- Alex Soriano, Barcelona, Spain