Does Antimicrobial Stewardship and Specific *Clostridium difficile* Antimicrobial Prophylaxis Prevent CDI?

Oliver A. Cornely

Dept. I for Internal Medicine
Infectious Diseases
Centre for Clinical Trials & Translation
BMBF 01KN1106
CECAD – Cluster of Excellence
University of Cologne
Stop anti-infectives

- Excessive coverage
- Combination tx for *P. aeruginosa*
- ICU: Empiric tx
- Haem/SCT: Antifungal combination tx
- Toxicity
- Tx duration accomplished

Adjust dose

- Upon changing degree of renal failure
- According to Therapeutic drug monitoring

Focus treatment

- Replace vancomycin with flucloxacillin in MSSA

Diagnose

- Collect more blood cultures
- Pursue biopsy
Antimicrobial Stewardship could prevent too short courses of anti-CDI treatment

Early recurrence (relapse):
Fidaxomicin: 7.4%
Vancomycin: 19.3%

Late recurrence (relapse/reinfection):
Fidaxomicin: 6.6%
Vancomycin: 8.1%

Day of follow-up after completion of therapy for CDI:

Number of patients with recurrence of CDI:

- Fidaxomicin
- Vancomycin

Avoid Proton Pump Inhibitors (PPI)

Administration of proton pump inhibitors in critically ill medical patients is associated with increased risk of developing Clostridium difficile–associated diarrhea

Lukas Buendgens, MD, Jan Bruensing, MD, Michael Matthes, Hanna Dückers, MD, Tom Luedde, MD, PhD, Christian Trautwein, MD, Frank Tacke, MD, PhD *,1, Alexander Koch, MD

Department of Medicine III, RWTH-University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany

- PPI prevent gastrointestinal bleeding ICU patients
- PPI increase risk of CDI in non-ICU in-patients
- Retrospective, single-center analysis, 1999-2010
- N= 3,286 critically ill patients
- 91% received stress ulcer prophylaxis
 - 56% PPI
 - 6% H2 blockers
 - 10% sucralfate
 - 20% combinations

Avoid Proton Pump Inhibitors (PPI)

• 1% developed GI bleeding, independent of prophylaxis
• 3.3% developed CDI, associated with
• Independent risk factors for CDI by multivariate analysis
 ➢ Fluoroquinolones (odds ratio 1.9)
 ➢ 3rd generation cephalosporins (OR 1.8)
 ➢ PPI (OR 3.1)
• Risk adjusted PPI use should be investigated
 ➢ Mechanical ventilation
 ➢ Coagulopathy

Long-Term Care Facilities (LTCF)

- Setting: 160-bed LTCF attached to a hospital
- Initiation of an ID consulting service
- Comparison of systemic antimicrobial use & C. difficile tests before and after

Long-Term Care Facilities (LTCF)

• Total systemic antibiotic use decreased by 30%
 ➢ -32% reduction in oral
 ➢ -25% reduction in i.v.
 ➢ -64% for tetracyclines
 ➢ -61% for clindamycin
 ➢ -38% for sulfamethoxazole/trimethoprim
 ➢ -38% for fluoroquinolones
 ➢ -28% for β-lactam/β-lactamase inhibitor combinations

• The rate of positive *C. difficile* tests declined

Long-Term Care Facilities (LTCF)

- Positive *C. difficile* Tests – “Trend reversed”

Bedside CDI testing prevents empiric treatment

POC tests over last two years
N=275

Positive
N=22 (8%)

Negative
N=253 (92%)

Cornely O, data on file.
Effect of Antimicrobial Stewardship on CDI Incidence – A Meta-Analysis

Saturday, May 10, 14:18 Hall G

<table>
<thead>
<tr>
<th>Study of subgroup</th>
<th>log [Risk ratio]</th>
<th>SE</th>
<th>Weight</th>
<th>Risk ratio IV, Random, 95% CI</th>
<th>Risk ratio IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elligson 2012</td>
<td>-0.37</td>
<td>0.393</td>
<td>5.0%</td>
<td>0.69 [0.32, 1.49]</td>
<td></td>
</tr>
<tr>
<td>Fowler 2007</td>
<td>-1.05</td>
<td>0.372</td>
<td>5.3%</td>
<td>0.35 [0.17, 0.73]</td>
<td></td>
</tr>
<tr>
<td>Frank 1997</td>
<td>0.029</td>
<td>0.522</td>
<td>3.6%</td>
<td>1.03 [0.37, 2.86]</td>
<td></td>
</tr>
<tr>
<td>Gulihar 2009</td>
<td>-1.65</td>
<td>0.522</td>
<td>3.6%</td>
<td>0.19 [0.07, 0.53]</td>
<td></td>
</tr>
<tr>
<td>Jones 1997</td>
<td>-0.4</td>
<td>0.205</td>
<td>8.1%</td>
<td>0.67 [0.45, 1.00]</td>
<td></td>
</tr>
<tr>
<td>Ludlam 1999</td>
<td>-0.721</td>
<td>0.177</td>
<td>8.7%</td>
<td>0.49 [0.34, 0.69]</td>
<td></td>
</tr>
<tr>
<td>Malani 2013</td>
<td>-0.755</td>
<td>0.257</td>
<td>7.2%</td>
<td>0.47 [0.28, 0.78]</td>
<td></td>
</tr>
<tr>
<td>Miller 2009</td>
<td>-1.341</td>
<td>0.341</td>
<td>5.8%</td>
<td>0.26 [0.13, 0.51]</td>
<td></td>
</tr>
<tr>
<td>O’Connor 2004</td>
<td>-1.164</td>
<td>0.567</td>
<td>3.2%</td>
<td>0.31 [0.10, 0.95]</td>
<td></td>
</tr>
<tr>
<td>Price 2010</td>
<td>-0.661</td>
<td>0.082</td>
<td>10.1%</td>
<td>0.52 [0.44, 0.61]</td>
<td></td>
</tr>
<tr>
<td>Reinoso 2002</td>
<td>-3.372</td>
<td>1.438</td>
<td>0.7%</td>
<td>0.03 [0.00, 0.57]</td>
<td></td>
</tr>
<tr>
<td>Schön 2011</td>
<td>0.034</td>
<td>0.103</td>
<td>9.8%</td>
<td>1.03 [0.85, 1.27]</td>
<td></td>
</tr>
<tr>
<td>Starks 2008</td>
<td>-0.984</td>
<td>0.309</td>
<td>6.3%</td>
<td>0.37 [0.20, 0.68]</td>
<td></td>
</tr>
<tr>
<td>Stone 1998</td>
<td>-0.546</td>
<td>0.251</td>
<td>7.3%</td>
<td>0.58 [0.35, 0.95]</td>
<td></td>
</tr>
<tr>
<td>Talpaert 2011</td>
<td>-1.079</td>
<td>0.272</td>
<td>6.9%</td>
<td>0.34 [0.20, 0.58]</td>
<td></td>
</tr>
<tr>
<td>Thomas 2002</td>
<td>-0.78</td>
<td>0.19864</td>
<td>8.3%</td>
<td>0.46 [0.31, 0.68]</td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI): 100.0% 0.48 [0.38, 0.62]

Heterogeneity: $\tau^2 = 0.14; \chi^2 = 61.27, df = 15 \:(P<0.00001); I^2 = 76%$

Test for overall effect: $Z = 5.94 \:(P<0.00001)$
Many of Our Patients are at Risk of CDI

- >65 years1,2
- Chronic underlying diseases3
- Antibiotics use2,4
- Immunosuppressants5
 - AML7
 - HSCT7
- Surgical procedures6
- Previous CDI episode2

Specific Prophylaxis – Challenges

• Whose the target population?

▷ At Cologne University screening of all CDI cases for clinical trial inclusion since 2006

▷ No CDI clusters

▷ No two CDI patients on the same ward at the same time
Of note, 23/28 (82%) CDI episodes occurred within one month after allogeneic transplantation.
Specific Prophylaxis

- Safety and efficacy of fidaxomicin for prophylaxis against CDI
- Hematopoietic stem cell transplantation
- RCT, placebo-controlled, N=350
- Recruiting
Does prophylactic metronidazole – before patients receive other antibiotics – reduce the risk of CDI?

Retrospective cohort analysis

N= 12,026 high-risk patients (2008-2012)
Specific Prophylaxis with Metronidazole?

80% reduction (OR 0.2; 95% CI, 0.11–0.38) adjusted for age, sex, and comorbidities.

Probiotics for the Prevention of *Clostridium difficile*-Associated Diarrhea

A Systematic Review and Meta-analysis

Bradley C. Johnston, PhD; Stephanie S.Y. Ma, MD; Joshua Z. Goldenberg, BSc; Kristian Thorlund, PhD; Per O. Vandvik, MD, PhD; Mark Loeb, MD; and Gordon H. Guyatt, MD

• To assess efficacy & safety of probiotics for prevention of CDI
• 20 trials from 1989 - 2011
• N=3,818
• Moderate-quality evidence suggests that probiotic prophylaxis results in a large reduction in CDAD without increase in important adverse events

Prophylaxis of Recurrence – MoAbs

- MK-6072 and MK-3415A in CDI (MODIFY I)
 - RCT, placebo-controlled, N=1200
 - Recruiting

- MK-3415, MK-6072, and MK-3415A in CDI (MODIFY II)
 - RCT, placebo-controlled, N=1600
 - Recruiting

ClinicalTrials.gov
NCT01241552 & NCT01513239
Prophylaxis of Recurrence – Strategies

- Vaccines
- Non-toxigenic *C. difficile*
1. Diagnose CDI on the first day of diarrhoea

2. Treat along the ESCMID guidelines

3. Explain CDI to physicians, patients, relatives
 - e.g. ECDC fact sheets

4. ID consult when high risk of recurrence
 - e.g. continued antibacterial use
Outlook

• What might be used tomorrow
 ➢ New antibiotics are coming
 ➢ Other therapeutic principles
 ➢ Primary prophylaxis
 if we identify a population at high enough risk

• What can be used today
 ➢ Antimicrobial stewardship
 ➢ Prophylaxis of recurrence with FDX