09:00-11:00 HALL I
An update on leishmaniasis

TREATMENT OF IMMUNOCOMPROMISED HOSTS WITH LEISHMANIASIS

Rogelio López-Vélez MD, DTM&H, PhD
Tropical Medicine. Infectious Diseases
Hospital Ramón y Cajal. Madrid. Spain
INTRODUCTION

• *Leishmania* parasites establish chronic intracellular parasitism and survive for an infected person’s lifetime (*latency/cryptic infection*).

• **Cryptic infection can be detected** in persons without a previous history of clinical VL by serology, by detection of parasite DNA in blood samples, or by a positive reaction to the leishmanin skin test (LST).

• **The possible evolution of cryptic infections is unclear.** It has been estimated that in endemic areas the proportion of asymptomatic infections is 10-20 times greater than the number of clinically apparent VL cases.

• Conditions of depression of the immune system, such as HIV infection or immunosuppressive treatments in transplant recipients and in patients with autoimmune diseases, impair the capability of the immune response to resolve the infection and allow the **reactivation of the disease** (even years after infection)

• **Symptomatic disease can also occur after primary infection.**
IMMUNOCOMPROMISED
HIV+ HOSTS
HIV+ patients with VL have
- higher mortality rates (13-18% vs 1-5% in immunocompetent patients)
- higher treatment failure rates (~30%)
- higher relapse rates than immunocompetent patients (prolonged chronic course)

Concomitant opportunistic infections can overlap

Few clinical trials about the efficacy of treatment in HIV+ patients: in Europe (*L.infantum*), in East Africa and India (*L.donovani*)

Effective therapy can be different in different geographical areas:
- High rate of resistance to pentavalent antimonials in India, especially in Bihar
- LAB is effective in Indian HIV/VL, but efficacy is lower in East African HIV/VL patients

There are still many unanswered questions
- Drug of choice?
- Dose & Duration?
- Combined therapies?
- Drug regimen for relapses?
- Maintenance therapy / Secondary prophylaxis?
- Treatment of latent infection / Primary prophylaxis?
TREATMENT OF HIV/AIDS PATIENTS WITH VISCERAL LEISHMANIASIS
Pentavalent antimonials

- Dose: 20 mg Sb\(^{v+}\)/kg/day, im or iv for 28-30 days
- Europe: cure rates \(\approx 33\%-82\%\) and frequent relapses
- East Africa (Ethiopia): cure rates \(\approx 43.5\%\)
- India (Bihar): high rate of resistance
- High toxicity (pancreas, heart)
- High mortality
- No longer recommended as first line treatment
17 articles involving 920 VL (76.1% first VL episode) episodes. Only 4 randomized trials involving 279 patients. The efficacy (definition varied among studies) of therapy was assessed by clinical and/or microbiologic criteria. 62.3% (456) of the 732 treated episodes with available information about TOC. 49.6% of the patients had AIDS criteria before VL diagnosis. The median or mean baseline CD4 cell counts range from 25 to 204 cells/ml

- AB-deoxycholate similar to AB-lipid formulations

- ABL superior to Sbv+

- Sbv+ higher toxicity than AB/ABL

- Sbv+ early mortality rate x 3 times in comparison to AB/ABL (18.4% vs 6.1%)

- CD4 count had no influence on efficacy, neither on mortality

- Not possible to assess difference in relapse rate among different treatments
TREATMENT OF HIV/AIDS PATIENTS WITH VISCERAL LEISHMANIASIS
Amphotericin B (AB), amphotericin B lipid complex (ABLC) and liposomal amphotericin B (LAB)

• LAB is the preferred treatment. FDA and WHO recommend 40 mg/Kg total dose: 4 mg/kg/d, iv given on days 1-5, 10, 17, 24, 31, 38

• Amphotericin B lipid complex at 30-40 mg/kg iv, total dose (3–5mg/kg/d over 10 days or days 1–5, 10, 17, 24, 31 and 38) and Amphotericin B deoxycholate at 0.7-1 mg/Kg/d iv, for 28 days, similar to LAB

• Good tolerated. Parasitological failure rates can be about 32% reaching up to 56% in those patients presenting with relapses.

• More effective in India : 20 mg/Kg (4 doses of 5 mg/kg over 4-10 days)

• Less effective in East Africa (Ethiopia)

-Meyerhoff A. Clin Infect Dis 1999
-Laguna F. J Antimicrob Chemother 2003
-Sinha PK. Clin Infect Dis 2011;
-Ritmeijer K. Clin Infect Dis 2011
TREATMENT OF HIV/AIDS PATIENTS WITH VISCERAL LEISHMANIASIS
Miltefosine

- Limited information about efficacy, tolerance and safety in HIV+ patients
- Approved for *L. donovani* but anecdotally has been used in Europe for *L. infantum*
- Dose: 2.5 mg/kg/day (max 150 mg day), po for 28 days.
- Patients respond with symptomatic improvement but outcomes are suboptimal with high rates of relapse.

-Sindermann H. Clin Infect Dis 2004
-Ritmeijer K. Clin Infect Dis 2006
-Troya J. Scand J Infect Dis 2008
• There are no clinical trials with pentamidine and experience is limited to clinical cases where on many occasions a combination with other drugs was used.

• The efficacy of paromomycin has not been established. The different trials that prove its efficacy are in combined therapies with other drugs have been carried out mainly in HIV negative patients.
• Relapses can occur soon after the end of therapy

• Follow up periods for VL treatment should be increased to 12 months instead of 6 months as have been commonly applied.

• **Monitor clinically** for relapse of symptoms and confirm by direct visualization (or culture) of bone marrow aspirate.

• Low but detectable levels of *Leishmania* DNA in peripheral blood by PCR does not always herald a clinical relapse.

• **Quantitative real-time polymerase chain reaction (qPCR)** in the blood measures the parasite load and serves as an index for monitoring the response to treatment. In relapses, qPCR has a 100% negative predictive value.

• **Serology** is of very limited utility in the diagnosis of relapse.

Predictors of VL relapse in HIV+ (systematic review)

- CD4+ counts <100 cells/mL at the time of primary VL diagnosis
- Previous history of VL relapse
- Absence of an increase in CD4+ cells at follow-up after treatment
 - CD4 cell counts <200 cells/mL at 6 months are a strong predictor of relapse
 - CD4 cell counts <100 cells/mL at 6 months are at a high risk of multiple relapses
- Lack of secondary prophylaxis

-Cota GF. PLoS Negl Trop Dis 2011
Retreat with LAB as per initial episode if relapse.

There are insufficient data regarding the efficacy of combination therapy in HIV patients. However, many experts favor combined therapy especially for those patients with multiple relapses.

- LAB (30-60 mg/Kg) + miltefosine (100-150 mg/d for 28 days)
 Ongoing trial in Ethiopia: LAB (30 mg/kg) + miltefosine (28 days) vs LAB monotherapy

- Combinations of antimonials with other drugs such as allopurinol, azole drugs or gamma-Interferon and the growth factor of rHuGM-CSF colonies have been used but with insufficient evidence to consolidate the recommendation.
Secondary prophylaxis consistently reduced VL relapse rates in pooled analysis (OR 0.228), but there were insufficient data to compare different regimens.

- **Pentamidine** 4-6 mg/kg infused every 3-4 weeks
 - Ongoing a prospective study in Ethiopia with pentamidine
- **LAB** 3–5 mg/kg every 3-4 weeks
- **Pentavalent antimonials** 20 mg/kg every 3-4 weeks
- Limited experience with miltefosine or azole drugs.

Discontinue prophylaxis if CD4+ T-cell counts remain >350/mm3 for at least 3–6 months in response to ART. However, some experts suggest that such prophylaxis should be continued indefinitely because some patients have had relapses despite having CD4 cell counts >200 cells/mm3.

- López-Vélez R. J Antimicrob Chemother 2004
- Berenguer J. AIDS 2000
- NCT01360762
• The risk of developing VL is estimated to be between 100 and 2,300 times higher in HIV-infected than in non-HIV infected individuals.

• High prevalence of asymptomatic Leishmania infection in HIV-infected patients in endemic areas.
 – 20% of asymptomatic HIV+ in Brazil (serology or PCR)
 – 16.5% of asymptomatic HIV+ in Italy (PCR)

• In North-Ethiopia up to 40% of patients with VL are co-infected with HIV.

• Most HIV/VL have CD4 <200 cells/ml, and <100 cells/ml in up to half of cases.

• Leishmania parasitemia is higher in patients with higher HIV loads

 – Morales MA. J Infect Dis 2002
 – Colomba C.. BMC Infect Dis 2009
Tackling *Leishmania* infection before disease onset would be a logical approach (as in tuberculosis, cryptococal meningitis, toxoplasmosis, etc).

VL screening and treatment is not recommended in international guidelines. However, this has never been well studied, and merits further exploration in VL-endemic areas.

- Primary prophylaxis?
- Pre-emptive therapy?
- Periodic screening for *Leishmania* by **q-PCR** in HIV-infected subjects to select patients at higher risk of *Leishmania* reactivation?
Immunosuppression is a risk factor for diffuse CL and disseminate CL.

ML and MCL appear to be more common in immunosuppressed patients.

Whereas MCL is typically associated with *L. braziliensis*, there are increasing reports of mucosal lesions (with or without concurrent cutaneous or visceral disease) caused by *L. infantum, L. donovani, L. major,* and *L. tropica*.

Visceralization of dermatotrophic species has been reported.

CL-HIV/AIDS co-infection is generally treated with systemic therapy and standard drug regimens. Higher clinical resistance may be observed with antimonials manifest by an initial response followed by relapse weeks to months later.
Antiretroviral therapy (ART)

- Improves survival of co-infected patients
- Effect on relapse is partial, increases the time interval to VL relapse.
- Dramatic reductions in the incidence of VL–HIV co-infection

ART should be started as soon as the co-infected patient can tolerate it.

In-vitro studies have consistently documented an inhibitory effect of specific HIV-1 protease inhibitors on *Leishmania* parasites

Leishmaniasis-associated immune reconstitution inflammatory syndrome (IRIS) reactions following initiation of ART have been reported occasionally and require treatment with corticosteroids

[—Lopez-Velez R. Ann Trop Med Parasitol 2003](#)
[—van Griensven J. Lancet Infect Dis 2013](#)
IMMUNOCOMPROMISED
NON-HIV HOSTS
• Non-HIV related immunosuppressive conditions are becoming increasingly prevalent globally, mainly because of better medical care of patients with chronic illnesses and the therapeutic use of immunosuppressive drugs.

• That immunosuppressive conditions pose a real challenge in *Leishmania* endemic regions is illustrated by the recent *L.infantum* outbreak in Madrid.
 – Among the 446 cases detected between 2009 and 2012, 15.2% (n= 68) had immunosuppressive conditions, mostly non- HIV-related.
 – Overall, 31.3% of VL cases and 6.3% of CL cases were diagnosed in immunosuppressed individuals.
Experience mostly based on case reports or small case series.

Initial treatment response is better and recurrence rates are lower than in HIV+ individuals, but not as good as in the immunocompetent population.

Although systematic comparisons are lacking, most authors recommend LAB.

Treatment can be complicated by overlapping toxicity and drug interactions between some anti-leishmanial and immunosuppressive drugs.

Maintenance therapy has occasionally been used. Surprisingly, many patients remained relapse-free without maintenance therapy and despite the ongoing use of immunosuppressive medication.
• Many cases of CL have been reported.

• ML and MCL appear to be more common in immunosuppressed patients

• Immunosuppression is a risk factor for **diffuse CL**, an anergic form that is notorious for its poor treatment response. In this form, multiple nodular lesions containing large numbers of parasites are seen.

• **Disseminated CL**, presenting with multiple pleomorphic lesions, is another rare form that can be seen

• **Visceralization of dermatotropic** species

• **Skin dissemination of viscerotropic** species
• MCL is typically associated with *L. braziliensis*, but there are increasing reports of mucosal lesions (with or without concurrent cutaneous or visceral disease) caused by *L.infantum, L.donovani, L.major, and L.tropica*

• Especially with advanced immunosuppression, treatment response can be poorer, with higher rates of recurrence, and the risk of dissemination and concurrent VL and ML is higher.

• Generally speaking, is a factor arguing in favour of *systemic treatment* instead of local therapy for CL.

• Although some cases of isolated ML have been successfully treated with local treatment, most authors argue in favour of *systemic treatment for ML*, given the risk of subsequent visceralization
TABLE 2. Selected reports on cases of visceral leishmaniasis found in non-human immunodeficiency virus-related immunosuppressive conditions

<table>
<thead>
<tr>
<th>Medical condition</th>
<th>Immunosuppressive drugs</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transplantation</td>
<td></td>
<td>[37–40,183]</td>
</tr>
<tr>
<td>Bone marrow/haematopoietic stem cells</td>
<td>Various, including steroids, cyclosporine, azathioprine, tacrolimus, and mycophenolate mofetil</td>
<td>[27–36,184]</td>
</tr>
<tr>
<td>Solid organ: mainly kidney; more rarely liver, heart, lung, and kidney–pancreas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheumatological/connective tissue diseases/vasculitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>Various, including steroids, methotrexate, cyclophosphamide,</td>
<td>[44,46,47,51,98,99,185–189]</td>
</tr>
<tr>
<td>Systemic lupus erythematosus</td>
<td>cyclosporine,</td>
<td>[43,45,99]</td>
</tr>
<tr>
<td>Wegener’s granulomatosis</td>
<td>anti-TNF-α agents</td>
<td>[48]</td>
</tr>
<tr>
<td>Idiopathic juvenile arthritis</td>
<td></td>
<td>[80,190]</td>
</tr>
<tr>
<td>Ankylosing spondylitis</td>
<td></td>
<td>[149,190]</td>
</tr>
<tr>
<td>Giant cell arthritis</td>
<td></td>
<td>[149]</td>
</tr>
<tr>
<td>Psoriatic arthritis</td>
<td></td>
<td>[51,111,191]</td>
</tr>
<tr>
<td>Other chronic inflammatory or iatrogenic immunosuppressive conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthma</td>
<td>Steroids</td>
<td>[56]</td>
</tr>
<tr>
<td>Asthma/dermatitis</td>
<td>Steroids</td>
<td>[168]</td>
</tr>
<tr>
<td>COPD</td>
<td>Steroids</td>
<td>[58]</td>
</tr>
<tr>
<td>Cheilitis granulomatosa</td>
<td>Steroids</td>
<td>[56]</td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>Azathioprine/cyclosporine</td>
<td>[59]</td>
</tr>
<tr>
<td>Sarcoidosis</td>
<td>Steroids</td>
<td>[57]</td>
</tr>
<tr>
<td>Myasthenia gravis</td>
<td>Steroids</td>
<td>[56]</td>
</tr>
<tr>
<td>Oncology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haematological malignancies</td>
<td>Various (chemotherapy)</td>
<td>[60,192–195]</td>
</tr>
<tr>
<td>Solid tumours</td>
<td></td>
<td>[61]</td>
</tr>
</tbody>
</table>

COPD, chronic obstructive pulmonary disease; TNF-α, tumour necrosis factor-α.
*Non-exhaustive, with priority given to more recent or particularly interesting cases.
<table>
<thead>
<tr>
<th>Organization</th>
<th>Target group</th>
<th>Preferred therapy</th>
<th>Alternative therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL</td>
<td>Organ transplant</td>
<td>Liposomal amphotericin B 21 mg/kg total dose 3 mg/kg IV days 1–5, 14, 21</td>
<td>Amphotericin B deoxycholate 1.0 mg/kg daily for 15–20 days or a pentavalent antimony compound</td>
</tr>
<tr>
<td></td>
<td>HIV</td>
<td>Liposomal amphotericin B 20–60 mg/kg total dose 2–4 mg/kg IV daily or interrupted schedule (e.g. 4 mg/kg days 1–5, 10, 17, 24, 31, 38)</td>
<td>Other amphotericin B lipid complex dosed as for liposomal amphotericin B</td>
</tr>
<tr>
<td></td>
<td>HIV</td>
<td>Liposomal amphotericin B 40 mg/kg total dose 3 mg/kg IV days 1–5, 10, 17, 24, 31, 38</td>
<td>Amphotericin B deoxycholate 0.5–1.0 mg/kg IV daily (total dose of 1.5–2.0 g)</td>
</tr>
<tr>
<td></td>
<td>HIV</td>
<td>Liposomal amphotericin B 40 mg/kg total dose 3 mg/kg IV daily or days 1–5, 10, 17, 24, 31, 38</td>
<td>SSG 20 mg Sb5+/kg IV/IM daily for 28 days</td>
</tr>
<tr>
<td>WHO [127]</td>
<td>HIV</td>
<td>Liposomal amphotericin B 40 mg/kg total dose 3 mg/kg IV daily or days 1–5, 10, 17, 24, 31, 38</td>
<td>Miltefosine 100 mg PO daily for 4 weeks</td>
</tr>
<tr>
<td>CL and MCL</td>
<td>Organ transplant</td>
<td>Pentavalent antimonials 20 mg Sb5+/kg IV/IM daily CL 21 days MCL 28 days</td>
<td>Conventional or liposomal amphotericin B, miltefosine, paromomycin, pentamidine, and fluconazole, based on species and availability</td>
</tr>
<tr>
<td>American Society of Transplantation and American Society of Transplant Surgeons [141]</td>
<td>HIV</td>
<td>Liposomal amphotericin B as for VL SSG 20 mg Sb5+/kg IV/IM daily for 28 days</td>
<td>Miltefosine PO, topical paromomycin, intralesional SSG, or local heat therapy</td>
</tr>
<tr>
<td>Centers for Disease Prevention and Control [128] (only for CL, not for MCL/ML)</td>
<td>HIV</td>
<td>Liposomal amphotericin B as for VL SSG 20 mg Sb5+/kg IV/IM daily for 28 days</td>
<td>Miltefosine PO, topical paromomycin, intralesional SSG, or local heat therapy</td>
</tr>
</tbody>
</table>

CL, cutaneous leishmaniasis; HIV, human immunodeficiency virus; IM, intramuscular; IV, intravenous; MCL, mucocutaneous leishmaniasis; PO, per os; SSG, sodium stibogluconate (pentavalent antimony); VL, visceral leishmaniasis. *Stibogluconate or meglumine antimoniate.

© by author
TREATMENT OF ORGAN TRANSPLANT PATIENTS WITH LEISHMANIASIS

Introduction

- Most cases after renal transplantation (the most commonly tx organ)
- Some after hematopoietic stem cell/bone marrow transplantation.

- By the bite of a sand fly
- By reactivation of dormant infection
- By an infected organ or transfusion/blood product.

- VL can occur as an early of 17 days or late of 18 months

- Classic form of VL
- Atypical cases of CL and ML caused by viscerotropic strains

- May simulate other infections: misdiagnosis

- Can cause graft dysfunction and loss of the organ

-Antinori S. Lancet Infect Dis 2008
Most authors recommend **LAB**: 4 mg/kg/d given on days 1-5, 10, 17, 24, 31, 38 (total dose 40 mg/kg).

An alternative could be a sequential combination of **LAB + miltefosine** (2.5 mg/kg/day, maximally 150 mg po daily, for 28 days).

A few renal transplant patients have been successfully treated with **fluconazole or ketoconazole + allopurinol**

Overlapping toxicity and drug interactions. When possible, doses of immunosuppressive drugs should be decreased during VL treatment.

-Antinori S. Lancet Infect Dis 2008
-Schwartz BS. Am J Transplant 2013
-Llorente S. Transplantation 2000
-Halim MA. Clin Infect Dis 1993
-Hueso M. Nephrol Dial Transplant 1999
• **Relapse**: 6 months after liver transplantation and 19 months after renal transplantation (higher immunosuppression in liver transplantation)

• **Monitoring** for *Leishmania* reactivation (microscopy and/or qPCR of serial peripheral blood or biopsy specimens) is recommended. Rising numbers of blood parasites measured by **qPCR assays over time** provide the earliest and most sensitive indicator of VL reactivation.

• **Presumptive antileishmanial treatment is not recommended** without evidence of reactivation.

• The indications for **secondary prophylaxis** remain to be defined (exceptionally used). Many patients remain relapse-free without maintenance therapy and despite the ongoing use of immunosuppressive medication.
Routine screening of donors from endemic areas is not recommended. If a donor is seropositive: accept the organ, and perform close monitoring of the recipient in the post-transplant period.

Serological screening or qPCR or specific interferon-gamma release assays of recipients with a history of potential exposure to *Leishmania* may be considered before transplantation.

If recipient is asymptotically infected or has a history of VL, close monitoring is warranted. Pre-emptive treatment is currently not recommended.

In a recent Brazilian study, none of the liver transplant recipients who were found to be *Leishmania*-PCR positive at the time of transplantation or received a PCR-positive organ developed VL over a median follow-up of 24 months, without any prophylaxis being given.

-Clemente WT. Am J Transplant 2014
TREATMENT OF PATIENTS ON IMMUNOSUPPRESSIVE DRUGS WITH LEISHMANIASIS

- Asthma, sarcoidosis, myasthenia gravis, IBD; rheumatologic diseases...
- Azathioprine, methotrexate, steroids, cyclosporine, cyclophosphamide...
- Tumor necrosis factor-a (TNF-a) antagonist drugs
 - There are a substantial number (several tens) of reports
 - Occurring after many months of use
 - Increases x16 times the risk in patients receiving infliximab or adalimumab than in patients receiving etanercept x8 times
- Most of cases are VL, but CL and MCL also observed.
- There are insufficient data for guideline treatment recommendations
- Screening for asymptomatic VL if history of travel to endemic regions in the past is not currently recommended
- If an immunosuppressed individual is known or found to be asymptomatically infected or has a history of VL, close monitoring is warranted.
- Pre-emptive treatment is currently not recommended.

-Neumayr AL. Travel Med Infect Dis 2013
Several cancer-related cases (mainly haematological malignancies and after haematopoietic stem cell/bone marrow transplantation) of VL have been reported, associated with the use of various chemotherapeutic regimens or monoclonal antibodies.

There are insufficient data for guideline recommendations at this time.
Slide withheld at request of author
Slide withheld at request of author
Online Lecture Library

Slide withheld at request of author
Slide withheld at request of author
Slide withheld at request of author
Online Lecture Library

Slide withheld at request of author
Online Lecture Library

Slide withheld at request of author
Online Lecture Library

Slide withheld at request of author
THANKS FOR YOUR ATTENTION