O081 Oral Session Emerging resistance in fungi INTRA-ABDOMINAL CANDIDIASIS IS AN IMPORTANT RESERVOIR FOR THE EMERGENCE OF FKS MUTATIONS AMONG CANDIDA GLABRATA AND CANDIDA ALBICANS

R.K. Shields¹, M.H. Nguyen¹, C.J. Clancy¹

¹Medicine, University of Pittsburgh, Pittsburgh PA, USA

<u>Objectives:</u> Candida echinocandin (EC) resistance is attributed to *FKS* mutations. Our objectives were to define the incidence of *FKS* mutations for different types of invasive candidiasis (IC), and identify associations between *FKS* mutations and EC treatment responses.

<u>Methods:</u> Isolates were collected from pts with bloodstream or intra-abdominal infections (BSI, IAC). Caspofungin (CSP) minimum inhibitory concentrations (MICs) were determined by broth microdilution. Prior EC exposure was defined as \geq 3d of CSP before IC, and breakthrough (BT) as receipt of CSP at onset of IC. *FKS1* (all spp.) and *FKS2* (*C. glabrata* [Cg]) hot spots were PCR-amplified.

Results: 256 isolates causing unique episodes of IC were tested; 54% (139), 20% (52), 17% (44), 4% (11), and 4% (10) were Cg, C. albicans (Ca), C. parapsilosis (Cp), C. tropicalis (Ct), and C. krusei (Ck), respectively. 56% (144/256) of isolates (90 Cq, 27 Ca, 16 Cp, 8 Ck, 3 Ct) were from patients (pts) without prior EC exposure; none harbored FKS mutations. Median EC exposure was 21.5d (range 3 – 438) for the remaining 112 isolates (83 BSI, 29 IAC; 49 Cg, 25 Ca, 28 Cp, 8 Ct, 2 Ck); 27% (30) were BT (11 Cg, 9 Cp, 7 Ca, 2 Ct, 1 Ck) and 13% (15) FKS mutants (12 Cg [4 FKS1, 8 FKS2], 3 Ca). BT was more common for IAC than BSI (45%, 13/29 vs 20%, 17/83; p=0.015). Rates of FKS mutations were 24% and 12% for Cg and Ca. 73% (8) and 14% (1) of BT Cg and Ca were mutants, respectively. FKS mutations were absent among other spp. 21% (6) and 11% (9) of isolates from IAC and BSI were mutants, respectively (p=0.21). 83% (5/6) of BT Cq from pts with IAC were FKS mutants. Median CSP MICs were higher (2 vs 0.5; p=0.0002) and prior EC exposure longer (68 vs 20d; p=0.002) in FKS mutants versus wild-type (WT). 61% (157) of pts were treated with an EC; 41% (64) failed therapy, including 93% (13/14) with IC due to FKS mutants compared to WT (36%; p<0.0001). Failure rates were 51% (19/37), 50% (3/6), 40% (11/27), 38% (3/8), and 35% (28/79) for Cp, Ck, Ca, Ct, and Cq, respectively. Failure was more common with IAC than BSI (71%, 20/28 vs 34%, 44/129; p= 0.0005), and with prior EC exposure (58%, 46/80 vs 23%, 18/77; p<0.0001). Median CSP MICs did not differ among pts who failed or responded to ECs (p=0.11).

<u>Conclusions:</u> *FKS* mutations were seen in Cg and, to a lesser extent, Ca isolates after prolonged EC exposure. Mutations were not detected in other spp., even during BT infections. Risks for treatment failure included *FKS* mutations, prior EC exposure, and IAC. IAC was an important reservoir for emergence of EC resistance.