Combination Therapy for KPC Producers

George L. Daikos, MD
University of Athens School of Medicine

23rd ECCMID, Berlin Germany, 27-30 April 2013
Carbapenem Producing Enterobacteriaceae (CPE). A major Public Health Threat

• Increased mortality (25%-70%)

• Limited treatment options

• High potential for spread
Current Trends in Epidemiology of CPEs

Hospital setting
- Predominant bacterial host
 - *K. pneumoniae*
- Predominant enzymes
 - KPC
 - VIM
 - NDM
 - OXA-48

Community setting
- Predominant bacterial host
 - *E. coli*
- Predominant enzymes
 - NDM
 - OXA-48

- First reported as KPC-1 (later corrected to be KPC-2) in 2001
- Isolated from a patient with nosocomial infection in an ICU in a North-Carolina hospital (1996?) as part of routine surveillance (ICARE project)
- Hydrolyze penicillins, β-lactamase inhibitors, and all cephalosporins, monobactams, carbapenems and display an extensive drug resistant phenotype
KPC genetic background

• *bla*KPC genes are located onto on Tn3 related Tn4401 transposon which has spread to various Inc groups plasmids (IncFIIAS, IncFIIk/B, IncN, InL/M, IncX, IncR and some non typable)

• *bla*KPC genes have been identified in different bacterial species and in many different clonal lineages

• The predominant bacterial host is Klebsiella and the predominant clone is the ST258
Slide withheld at request of author
KPC Infections from 114 Hospitals

National Action Plan (2010-2011)

<table>
<thead>
<tr>
<th>Department</th>
<th>Source of Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU</td>
<td>51.6%</td>
</tr>
<tr>
<td>Medicine</td>
<td>31.5%</td>
</tr>
<tr>
<td>Surgery</td>
<td>16.9%</td>
</tr>
<tr>
<td></td>
<td>Pneumonia 32.5%</td>
</tr>
<tr>
<td></td>
<td>Bacteremia 31.5%</td>
</tr>
<tr>
<td></td>
<td>UTIs 23%</td>
</tr>
<tr>
<td></td>
<td>SSI 12.9%</td>
</tr>
</tbody>
</table>

Hellenic Center for Disease Control and Prevention (KEELPNO)
Estimated Mortality Rate Among Hospitalized Patients with CRKP infections

✓ Israel 2007: 8/100,000 population
 Schwaber MJ. JAMA 2008; 300:2911

✓ Greece 2011: 10/100,000 population
 Hellenic Center for Disease Control and Prevention
 (National Action Plan)
All-cause Mortality of 338 Patients with Kp Bloodstream Infections

28-day mortality according to carbapenemases
Slide withheld at request of author
Slide withheld at request of author
Antimicrobial Agents with \textit{in Vitro} Activity against KPC Kp

- Gentamicin
- Carbapenems
- Colistin
- Tigecycline
- Fosfomycin
Resistance Profile of CPKP

Klebsiella

Colistin: 315 (23%)
Gentamicin: 274 (19%)
Tigecycline: 293 (23%)

Hellenic Center for Disease Control and Prevention
Inferior Clinical Efficacy of Colistin. Why?

- **Suboptimal dosing regimen of the drug.**
 - multivariate analysis of survival data showed that a lower total daily dosage of intravenous colistin was associated with increased mortality (Falagas et al. Int. J. Antimicrob. Agents 2010; 35:194 – 199).

- **Delay in attaining an efficacious drug concentration**

- **Optimal dosing regimen**
 - Once daily, twice daily or three times daily?
Mortality imbalance in the Tigecycline Phase 3 and 4 Clinical Trials

- Logistic regression modelling identified baseline bacteraemia as a predictor of mortality in the TGC treatment group.

- The mortality rate for TGC subjects with VAP and baseline bacteraemia was 50% (9/18 subjects) versus 7.7% (1/13 pts) in the COM group.

CID 2012:54 (15 June) • Prasad et al
Fosfomycin for the Treatment of 11 Critically-ill Patients infected with CR *K. pneumoniae*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, years</td>
<td>67.5</td>
</tr>
<tr>
<td>APACHE II score</td>
<td>23.4</td>
</tr>
<tr>
<td>No. of organ dysfunction, median</td>
<td>3</td>
</tr>
<tr>
<td>VAP</td>
<td>5</td>
</tr>
<tr>
<td>Primary bacteremia</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
</tr>
<tr>
<td>All-cause in hospital mortality</td>
<td>18.2%</td>
</tr>
</tbody>
</table>

All patients received combination Rx Fosfomycin with CMS or GM or Pip/tazo

Michalopoulos A et. al Clin Microbiol Infect 2010; 16: 184-6
Can we use carbapenems against carbapenemase-producing organisms?

- Experimental data
- PK/PD studies
- Human data
Distribution of Meropenem MICs for 372 Consecutive *K. pneumoniae* Blood Isolates

<table>
<thead>
<tr>
<th>MICs (μg/ml)</th>
<th>≤0.032</th>
<th>0.06</th>
<th>0.125</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>≥32</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIM</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>KPC, KPC+VIM</td>
<td></td>
<td>60</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO CARBAPENEMASE</td>
<td>0</td>
</tr>
</tbody>
</table>

No. of Isolates

MICs (μg/ml)
Comparison of the efficacies of two different doses of doripenem against carbapenemase-producing K. pneumoniae isolates in immunocompromised and immunocompetent animals.

MIC: 354=4, 356=8, 359=16
A critical interpretation of the animal infection model data suggests that optimized regimens of carbapenems are able to achieve at least a static effect in severely compromised hosts and a modest bactericidal effect in immunocompetent animals infected with KPC-positive isolates with MICs up to 4 or even up to 8 μg/ml.

Pharmacokinetics of three different dosing regimens of meropenem
Simulated Target Attainment Probabilities for 50% T>MIC of three Different Dosing Regimens of Meropenem
Carbapenem Monotherapy in 50 Patients with Serious CPE Infections

(Results compiled from 15 studies)

<table>
<thead>
<tr>
<th>MIC (µg/ml)</th>
<th>No. of patients</th>
<th>No. of successes</th>
<th>No. of failures</th>
<th>% failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 1</td>
<td>17</td>
<td>12</td>
<td>5</td>
<td>29.4</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>9</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>28.6</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>33.3</td>
</tr>
<tr>
<td>> 8</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>75</td>
</tr>
</tbody>
</table>

Tzouvelekis et al CMR 2012; 25: 682-707
Synergy Studies
In vitro activity of drug combinations against KPC-Kp

Carbapenem combinations

- CB+AG: N=16
- CB+Tig: N=9
- CB+PM: N=58

Other combinations

- CS+Gen: N=12
- Fos+other: N=268
- CS+Tig: N=4

Mean bacterial densities over 48 h for KPC-producing Klebsiella pneumoniae isolates with a tigecycline MIC of 1 μg/ml and a meropenem MIC of 8 μg/ml.

A

B

Bacterial densities of KPC 354 over 24 h in the in vitro chemostat model (doripenem MIC, 4 μg/ml).

Characterization of porin expression in *KPC producing Kp* identifies isolates most susceptible to the combination of colistin and carbapenems

- Colistin-doripenem combination was more effective than any of the agents alone against KPC-Kp
- The addition of ertapenem to colistin-doripenem further enhanced bactericidal activity and synergy
- The enhanced activity of colistin-doripenem-ertapenem was observed exclusively against KPC-Kp isolates with high levels of *ompK35* or *ompK36* expression.

Bactericidal Activity and Degree of killing of single, 2-, 3- drug combinations against 12 KPC-Kp isolates

Hong JH Antimicrob. Agents Chemother 2013
Survival of Animals Infected with KPC-Kp Clinical Isolates (pneumonia in neutropenic mice)

- KP6153
 - MICs: AM=32, DOR=32mg/L
- KPVM9
 - MICs: AM=64, DOR=16mg/L

Clinical studies
Outcomes of infections caused by carbapenemase-producing Klebsiella pneumoniae, according to treatment regimen.

Outcome of Infections Caused by KPC-Kp According to Treatment Regimen

41 patients with KPC-Kp BSIs
15 pts received combination Rx
 Polymyxines based=7
 Tigecycline based=5
 Other=3
19 pts received monotherapy
 Polymyxines=7
 Tigecycline=5
 Carbapenem=4
 Other=3
7 pts received Rx for < 48 h
Treatment Outcome of Bacteremia Due to KPC-Producing Klebsiella pneumoniae: Superiority of Combination Antimicrobial Regimens

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Survived N (%)</th>
<th>Died N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotherapy</td>
<td>8 (42)*</td>
<td>11 (58)*</td>
</tr>
<tr>
<td>Combination</td>
<td>13 (86.7)**</td>
<td>2 (13.3%)</td>
</tr>
</tbody>
</table>

* In 3 pts the infecting organism was resistant to administered agent (CLSI 2009)
** In 5 pts the infecting organism was resistant to carbapenems (CLSI 2009)

Mortality of Patients with KPC BSIs According to Treatment

<table>
<thead>
<tr>
<th>Treatment regimen</th>
<th>Died/Survived</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotherapy</td>
<td>25/21</td>
<td>54.3%</td>
</tr>
<tr>
<td>2 drug combination</td>
<td>23/33</td>
<td>41.1%</td>
</tr>
<tr>
<td>3 drug combination</td>
<td>4/19</td>
<td>17.4%</td>
</tr>
<tr>
<td>TIG + COL + MER</td>
<td>2/14</td>
<td>12.5%</td>
</tr>
<tr>
<td>TIG + GENT + MER</td>
<td>1/5</td>
<td>16.7%</td>
</tr>
<tr>
<td>COL + GENT + MER</td>
<td>1/0</td>
<td>100%</td>
</tr>
</tbody>
</table>

Kaplan Meier Curves of Survival Probability of Patients with KPC BSIs According to Treatment

\[P = 0.002 \]
Multivariate Analysis of Factors Associated with all-cause 30-day Mortality of Patients with KPC BSIs

<table>
<thead>
<tr>
<th>Variable</th>
<th>P</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Septic shock</td>
<td>0.008</td>
<td>7.17 (1.65-31.03)</td>
</tr>
<tr>
<td>APACHE</td>
<td><0.001</td>
<td>1.04 (1.02-1.07)</td>
</tr>
<tr>
<td>Inadequate empirical Rx</td>
<td>0.003</td>
<td>4.17 (1.61-10.76)</td>
</tr>
<tr>
<td>Definitive Rx Col+tigecl+merrop</td>
<td>0.01</td>
<td>0.11 (0.02-0.69)</td>
</tr>
</tbody>
</table>

Tumbarello M et al. CID 2012; 55: 943
Carbapenem-sparing antibiotic regimens for infections caused by KPC-producing Klebsiella pneumoniae in ICU

- 26 episodes in 22 patients
- 11 episodes were VAP, 5 VAP+bacteremia, 7 BSIs, and 3 other infections
- Treatment regimens
 - TIG + GENT + FOSFO = 8
 - TIG + COL + FOSFO = 5
 - TIG + COL + GENT = 5
 - TIG + GENT = 5
 - TIG + COL = 1
 - COL + GENT = 1
 - TIG = 1
- Overall favorable response 24/26 (92%)

Sbrana F Clinical Infectious Diseases 2013
Prospective Observational Study of *K. pneumoniae* BSIs

- Consecutive patients with *K. pneumoniae* BSIs
- A total of 338 patients were included in the analysis
 - 133 carbapenemase-negative
 - 205 carbapenemase-positive
 - 42 VIM-positive
 - 163 KPC/KPC+VIM
Treatment of Patients Infected with CPKP

- 12 pts received no active therapy
- 72 pts received one active drug
- 103 pts > 1 active drug
- 18 pts received Rx for <48 h and were excluded from the analysis

The pts who received 1 active drug were comparable with those who received > 1 active drug in terms of severity of underlying diseases, severity of sepsis, ICU or no ICU stay
Online Lecture Library

Slide withheld at request of author
Slide withheld at request of author
Novel Agents in Clinical Development with Activity Against KPC-Kp

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Status</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avibactam</td>
<td>Phase III</td>
<td>BLI, not effective against metallo-β-lactamases (MBLs)</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>Phase III (entering)</td>
<td></td>
</tr>
<tr>
<td>Ceftaroline</td>
<td>Phase I</td>
<td></td>
</tr>
<tr>
<td>Aztreonam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MK7655</td>
<td>Phase II</td>
<td>BLI, not effective against MBLs</td>
</tr>
<tr>
<td>Imipenem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biapenem</td>
<td>Phase I</td>
<td>Boronate inhibitor</td>
</tr>
<tr>
<td>Plazomicin</td>
<td>Phase II (completed)</td>
<td>Compromised by rRNA methylases which are present in NDMs</td>
</tr>
</tbody>
</table>
Conclusions

• The in vitro and in vivo data along with the current clinical experience indicate that combination therapy is more effective than monotherapy in the treatment of infections caused by KPC-producers.