Human Granulocytic Anaplasmosis in Europe

ECCMID 2013
Berlin

Christelle Koebel
Laboratory of Bacteriology
Strasbourg University Hospital, France
Anaplasma phagocytophilum

- **Order**: Rickettsiales

- **Outer cell wall structure**:
 - typical of Gram-negative bacteria
 - no peptidoglycan

- **Size**: 0.3 - 1 µm

- **Obligate intracellular pathogen (granulocytes)**

- **Morulae**: 2 - 7 µm
Anaplasmosis / Ehrlichiosis...

Human Granulocytic Ehrlichiosis

- US, 1990-94
- US, 1970

E. phagocytophila

- Europe, 1932
- 16S rDNA
gro ESL

Reorganization of genera in the families Ricketsiaceae and Anaplasmataceae in the order Rickettsiales [...]

JS Dumler, AF Barbet et al. (IJSEM, 2001)

Human Granulocytic Ehrlichiosis agent

Tick-borne fever

E. equi

US, 1970

Equine ehrlichiosis

Anaplasma phagocytophilum

E. phagocytophila
Transmission

- **Vectors:**
 - Europe: *Ixodes ricinus*
 - United States: *Ixodes scapularis*
 Ixodes pacificus

- **Reservoirs:**
 - small mammals: rodents
 - others: sheep, lamb, goat, cattle, roe deer

→ persistently infected carriers?
→ source of continuous transmission
Anaplasmosis in the USA

Geographic distribution of anaplasmosis incidence in 2010 (CDC)

Anaplasmosis cases, 1994-2010 (CDC)

1st characterization of HA, 1990-94

<table>
<thead>
<tr>
<th>Year of report</th>
<th>Nb of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>1</td>
</tr>
<tr>
<td>1995</td>
<td>2</td>
</tr>
<tr>
<td>1996</td>
<td>3</td>
</tr>
<tr>
<td>1997</td>
<td>4</td>
</tr>
<tr>
<td>1998</td>
<td>5</td>
</tr>
<tr>
<td>1999</td>
<td>6</td>
</tr>
<tr>
<td>2000</td>
<td>7</td>
</tr>
<tr>
<td>2001</td>
<td>8</td>
</tr>
<tr>
<td>2002</td>
<td>9</td>
</tr>
<tr>
<td>2003</td>
<td>10</td>
</tr>
<tr>
<td>2004</td>
<td>11</td>
</tr>
<tr>
<td>2005</td>
<td>12</td>
</tr>
<tr>
<td>2006</td>
<td>13</td>
</tr>
<tr>
<td>2007</td>
<td>14</td>
</tr>
<tr>
<td>2008</td>
<td>15</td>
</tr>
<tr>
<td>2009</td>
<td>16</td>
</tr>
<tr>
<td>2010</td>
<td>17</td>
</tr>
</tbody>
</table>
Anaplasmosis in Europe

- 1st European case: Slovenia, 1997
- Since 1997, ~100 confirmed or probable cases
 - Central Europe (Slovenia) and Scandinavia ++
 - Sporadic cases all over Europe
HA in Europe: geographic distribution

- Number of cases

- **Norway**: ≈ 25 cases
- **Slovenia**: 25 cases
- **Italy**: 7 cases
- **France**: 6 cases
- **Spain**: 2 cases
- **UK**: 13 cases
- **Germany**: 10 cases
- **Belgium**: 1 case
- **Croatia**: 6 cases
- **Serbia**: 8 cases
- **Greece**: 2 cases
- **Alb.**: 2 cases
- **Russia**: 1 case
- **Ukraine**: 1 case
- **Czech R.**: 10 cases
- **Hungary**: 6 cases
- **Slovakia**: 1 case
- **Bulgaria**: 1 case
- **Belarus**: 1 case
- **Latvia**: 1 case
- **Lithuania**: 1 case
- **Poland**: 1 case
- **Estonia**: 1 case
- **Finland**: 1 case
- **Sweden**: 1 case
- **Denmark**: 1 case
- **Austria**: 6 cases
- **Switzerland**: 1 case
- **Netherlands**: 1 case
- **N. Ireland**: 1 case
- **W. Ireland**: 1 case
Case definition (ESCMID guidelines, 2004)

Proposed case definition for Human Anaplasmosis

| Confirmed HA | Febrile illness with a history of tick bite or tick exposure
| | and:
| | ✓ Seroconversion or ≥ 4-fold change in Ab titre
| | or:
| | ✓ Positive PCR assay demonstrating *A. phagocytophilum* specific DNA in blood
| | or:
| | ✓ Isolation of *A. phagocytophilum* in blood culture |

| Probable HA | Febrile illness with a history of tick bite or tick exposure
| | and:
| | ✓ Presence of significant *A. phagocytophilum* Ab titre (>4-fold above cut-off value)
| | or:
| | ✓ Presence of intracytoplasmic morulae in a blood smear |
Pubmed literature query for HGA, HGE, E. phagocytophila, A. phagocytophilum in Europe
Period : 1997 - 2013

≈ 30 reports of series or individual cases
58 patients with data fulfilling the ESCMID guidelines

- Confirmed or probable cases of HA
- Epidemiological data
- Clinical manifestations
- Laboratory features
- Microbiological diagnosis
Epidemiology
(58 patients)

- **Seasonality:**
 - Between April and October
 - Peak between June and August

- **Most patients recall:**
 - History of tick bite 5 - 30 days before onset of illness

- **Exposure to ticks:**
 - Living in rural areas
 - Work: hunter, farmer, forestry worker
 - Leisure outdoor activities (country, wooden areas): forest walk, athletics, camping

- **Median time from bite to onset of symptoms:** 14 days
Clinical Manifestations
(58 patients)

- Clinical presentation: acute, nonspecific febrile illness

<table>
<thead>
<tr>
<th>Clinical findings</th>
<th>% of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-grade fever (> 38.5°C)</td>
<td>98 %</td>
</tr>
<tr>
<td>Headache</td>
<td>85 %</td>
</tr>
<tr>
<td>Malaise / asthenia</td>
<td>72 %</td>
</tr>
<tr>
<td>Arthralgia / myalgia</td>
<td>64 %</td>
</tr>
<tr>
<td>Nausea / vomiting / abdominal pain / diarrhea</td>
<td>50 %</td>
</tr>
<tr>
<td>Cough</td>
<td>22 %</td>
</tr>
<tr>
<td>Atypical pneumonitis (X-Ray established lung infiltrate)</td>
<td>9 %</td>
</tr>
<tr>
<td>Enlarged lymph nodes or enlarged spleen or liver</td>
<td>29 %</td>
</tr>
<tr>
<td>Cutaneous rash</td>
<td>9 %</td>
</tr>
<tr>
<td>Conjunctivitis</td>
<td>9 %</td>
</tr>
</tbody>
</table>
Laboratory features
(58 patients)

<table>
<thead>
<tr>
<th>Laboratory findings</th>
<th>% of patients (n = 58 patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombocytopenia</td>
<td>69 %</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>59 %</td>
</tr>
<tr>
<td>Increased values of ASAT / ALAT</td>
<td>74 %</td>
</tr>
<tr>
<td>Increased LDH activity</td>
<td>26 %</td>
</tr>
<tr>
<td>Increased CRP values</td>
<td>67 %</td>
</tr>
</tbody>
</table>

CSF analysis = normal
Bone marrow analysis = normal
Outcome (58 patients)

- Mild disease, 100% complete recovery
- Resolve quickly even in the absence of adapted antibiotics
- Treatment: doxycycline 100 mg twice daily for at least 7 days
 - 2/3 (37/58) patients only received specific ATB treatment
- Quick clinical improvement shortly after initiation of doxycycline
 - Symptoms usually resolve within 24-48h of ATB (100% cases)
- Prolonged course with relapsing fever in 12/58 patients
- Long-term outcome: favorable, regardless of antibiotic therapy
- No death and no long-term consequences
- ≠ USA: 5% patients require intensive care (case fatality rate < 1%)
Microbiological diagnosis

(58 patients)

<table>
<thead>
<tr>
<th>Laboratory diagnosis</th>
<th>Nb of patients (n = 58 patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Positive PCR assay</td>
<td>26</td>
</tr>
<tr>
<td>✓ Seroconversion or ≥ 4-fold ↑ of Ab titre</td>
<td>26</td>
</tr>
<tr>
<td>✗ Clinical features + presence of significant Ab titre</td>
<td>6</td>
</tr>
</tbody>
</table>

Confirmed cases

- Positive PCR assay
- Seroconversion or ≥ 4-fold ↑ of Ab titre

Probable cases

- Clinical features + presence of significant Ab titre
Diagnostic tools (1/3)

• Molecular detection:
 ▪ Most sensitive diagnostic test
 ▪ Within the 2 first weeks after onset of symptoms ++
 ▪ Acute phase blood (EDTA/citrate) or buffy coat, before antibiotic treatment

• Target genes:
 • Most frequent: 16S rDNA with sequence analysis
 • GroESL
 • msp2/p44: specific for Aph and multicopies (> 100 copies)
Diagnostic tools (2/3)

- Serologic testing:
 - Most commonly used diagnostic tool
 - IFA (IgM and IgG)
 - Human promyelocytic cell line (HL60) infected with tick/horse/human isolate
 - Commercial kits (Focus Technologies, MRL Diagnostics)
 - 2 sera: acute and convalescent phase
 - Often negative during the initial phase of disease!
 - No detectable antibodies in acute phase serum for ≥ 2/3 of the patients
Diagnostic tools (3/3)

- **Giemsa staining of peripheral blood smear:**
 - Early stage of infection only (first week++)
 - Before antibiotic treatment
 - Morulae: detected in 6 European cases only...
 - False-positive results: toxic granulations, Döhle bodies → Lacks sensitivity and specificity

- **Culture:**
 - Acute phase blood or buffy coat
 - Promyelocytic HL60 leukemia cell line
 - Development of cytopathic effects 5-12 days after inoculation
 - Almost never performed for diagnosis purpose
 - Europe: 2 cases in Czech Republic only (Hulinska et al. 2009)
Prospective study: Etiology of febrile illnesses after a tick bite
- Department of Infectious Diseases, Ljubljana, 1996 - 2004

Identified 24 adult patients with proven anaplasmosis

PCR assay was positive for 63% of patients between day 2 and 15 following onset of symptoms.

Specific antibodies were detected in only 25% of patients at initial presentation

Persistence of antibodies: IgG positive 2 years after diagnosis in 56% patients
• Eastern France: endemic area for Lyme borreliosis

• During summer 2009, anaplasmosis was investigated:
 ▪ in patients presenting a febrile syndrome
 ▪ with recent history of tick-bite or exposure to ticks

• 3 patients had a positive PCR assay in acute phase blood
 (molecular target: \textit{msp2/p44})

• Acute phase serum tested negative for \textit{A.ph} antibodies

• Specific antibodies were detected in convalescent serum

• Epidemiologic, clinical and biologic criteria from these
 3 patients were compatible with anaplasmosis
Sero-epidemiologic surveys

Prevalence of specific antibodies in healthy blood donors (%)

Prevalence of specific antibodies in tick-exposed populations (%)

- Limited recording and reporting?
- Underestimated disease?
- Asymptomatic / subclinical infection?
Infection rate in ticks

Prevalence of *A. phagocytophilum* in *I. ricinus* ticks

- **UK**: 1 - 2%
- **France**: 0.5 - 1.5%
- **Belg.**: 0.5%
- **NL**: 2 - 4%
- **Germany**: 1 - 2%
- **Austria**: 5 - 7%
- **Czech R.**: 10%
- **Switzerland**: 1 - 2%
- **Slovenia**: 3%
- **Croatia**: 3%
- **BH**: 14%
- **Serbia**: 8 - 13%
- **Slovakia**: 10%
- **Poland**: 8 - 14%
- **Estonia**: 1 - 3%
- **Latvia**: 3%
- **Lithuania**: 3%
- **Sweden**: 4.5%
- **Norway**: 3 - 9%
- **Denmark**: 0.5 - 1.5%
- **Swiss.**: 4.5%
- **Spain**: 8%
- **Italy**: 4 - 10%
- **UK**: 1 - 2%
- **Belg.**: 0.5%
- **NL**: 2 - 4%
- **Germany**: 1 - 2%
- **Austria**: 5 - 7%
- **Czech R.**: 10%
- **Switzerland**: 1 - 2%
- **Slovenia**: 3%
- **Croatia**: 3%
- **BH**: 14%
- **Serbia**: 8 - 13%
- **Slovakia**: 10%
- **Poland**: 8 - 14%
- **Estonia**: 1 - 3%
- **Latvia**: 3%
- **Lithuania**: 3%
- **Sweden**: 4.5%
- **Norway**: 3 - 9%
- **Denmark**: 0.5 - 1.5%
- **Swiss.**: 4.5%
- **Spain**: 8%
- **Italy**: 4 - 10%
Conclusions

- Anaplasmosis should be investigated in patients presenting:
 - Undifferentiated febrile illness
 - Cytopenia and elevated rates of liver enzymes
 - Whose medical history reveals exposure to ticks.

- Clinical course:
 - Mild disease
 - Uneventful recovery in 1-2 weeks, even in the absence of specific antibiotic therapy
 - Situation ≠ in USA: opportunistic complications
Conclusions

- **Laboratory confirmation:**
 - **Acute phase:**
 - Blood smear examination: low sensitivity
 - PCR ++ (EDTA whole blood, before ATB treatment) = diagnostic test of choice
 - **Late infection/convalescence:** serologic testing

- **Limitations:**
 - Specific PCR assay is not widely available for routine use
 - Serologic tests: often negative in early stage of infection (> 2/3 patients)

- Doxycycline therapy leads to clinical improvement in 24-48 h
Acknowledgments

- Strasbourg University Hospital:
 S. de Martino, B. Jaulhac, A. Kern, D. Christmann, Y. Hansmann, N. Lefebvre, S. Sferrazza-Mandala, N. Celestin

- Colmar Hospital:
 D. de Briel, I. Grawey, L. Souply, M. Martinot, M. Mohseni, A. Mothes

- Mulhouse Hospital:
 P. Kieffer, J. Mootien, L. Martzolff, JM Delarbre, A. Gravet

- Selestat Hospital:
 F. Sagez, C. Lemble

- Haguenau Hospital:
 B. Willemin, R. Dukic, A. Heidt

- Saverne Hospital:
 E. Wurtz, C. Hess

- National Reference Center for Rickettsiosis (Marseille):
 D. Raoult, P. Brouqui, S. Edouard